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BYPASS BINS FOR REFERENCE INDEX
CODING IN VIDEO CODING

This disclosure claims benefit of U.S. Provisional Appli-
cation No. 61/623,043, filed 11 Apr. 2012, U.S. Provisional
Application 61/637,218, filed 23 Apr. 2012, U.S. Provisional
Application 61/640,568, filed 30 Apr. 2012, U.S. Provisional
Application 61/647,422 filed 15 May 2012, and U.S. Provi-
sional Application No. 61/665,151, filed 27 Jun. 2012, the
contents of each of which are hereby incorporated by refer-
ence in their entirety.

TECHNICAL FIELD

This disclosure relates to video coding, and more particu-
larly to techniques for coding syntax elements in a video
coding process.

BACKGROUND

Digital video capabilities can be incorporated into a wide
range of devices, including digital televisions, digital direct
broadcast systems, wireless broadcast systems, personal digi-
tal assistants (PDAs), laptop or desktop computers, tablet
computers, digital cameras, digital recording devices, digital
media players, video gaming devices, video game consoles,
cellular or satellite radio telephones, video teleconferencing
devices, and the like. Digital video devices implement video
compression techniques, such as those described in the stan-
dards defined by MPEG-2, MPEG-4, ITU-T H.263, ITU-T
H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), the
High Efficiency Video Coding (HEVC) standard presently
under development, and extensions of such standards, to
transmit, receive and store digital video information more
efficiently.

Video compression techniques include spatial prediction
and/or temporal prediction to reduce or remove redundancy
inherent in video sequences. For block-based video coding, a
video frame or slice may be partitioned into blocks. A video
frame alternatively may be referred to as a picture. Each block
can be further partitioned. Blocks in an intra-coded (I) picture
or slice are encoded using spatial prediction with respect to
reference samples in neighboring blocks in the same picture
or slice. Blocks in an inter-coded (P or B) picture or slice may
use spatial prediction with respect to reference samples in
neighboring blocks in the same picture or slice or temporal
prediction with respect to reference samples in other refer-
ence pictures. Spatial or temporal prediction results in a pre-
dictive block for a block to be coded. Residual data represents
pixel differences between the original block to be coded and
the predictive block.

An inter-coded block is encoded according to a motion
vector that points to a block of reference samples forming the
predictive block, and the residual data indicating the differ-
ence between the coded block and the predictive block. An
intra-coded block is encoded according to an intra-coding
mode and the residual data. For further compression, the
residual data may be transformed from the pixel domain to a
transform domain, resulting in residual transform coeffi-
cients, which then may be quantized. The quantized trans-
form coefficients, initially arranged in a two-dimensional
array, may be scanned in a particular order to produce a
one-dimensional vector of transform coefficients for entropy
coding. Entropy coding also may be applied to a variety of
other syntax elements used in the video coding process.

SUMMARY

The techniques of this disclosure generally relate to
entropy coding video data. For example, when performing
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2

context adaptive coding, a video coder may code each bit or
“bin” of data using probability estimates, which may indicate
a likelihood of a bin having a given binary value. The prob-
ability estimates may be included within a probability model,
also referred to as a “context model.” A video coder may
select a context model by determining a context for the bin.
Context for a bin may include values of related bins of pre-
viously coded syntax elements. After coding the bin, the
video coder may update the context model based on a value of
the bin to reflect the most current probability estimates. In
contrast to applying a context coding mode, a video coder
may apply a bypass coding mode. For example, the video
coder may use a bypass mode to bypass, or omit, the regular
arithmetic coding process. In such instances, a video coder
may use a fixed probability model (that is not updated during
coding) to bypass code the bins.

The techniques of this disclosure relate to efficiently con-
text coding syntax elements associated with inter-coded
video data. For example, aspects of this disclosure relate to
efficiently coding reference index values, motion vector pre-
dictors, motion vector difference values, and the like. In some
instances, a video coder may perform context coding for
some bins of a syntax element and bypass coding for other
bins of the syntax element. For example, the video coder may
context code one or more bins of a reference index value and
bypass code one or more other bins of the reference index
value.

In an example, aspects of this disclosure relate to a method
for encoding a reference index syntax element in a video
encoding process that includes binarizing a reference index
value, encoding at least one bin of the binarized reference
index value with a context coding mode of a context-adaptive
binary arithmetic coding (CABAC) process, and encoding,
when the binarized reference index value comprises more
bins than the at least one bin coded with the context coded
mode, at least another bin of the binarized reference index
value with a bypass coding mode of the CABAC process.

In another example, aspects of this disclosure relate to an
apparatus for encoding a reference index syntax element in a
video encoding process that includes one or more processors
to binarize a reference index value, encode at least one bin of
the binarized reference index value with a context coding
mode of a context-adaptive binary arithmetic coding
(CABAC) process, and encode, when the binarized reference
index value comprises more bins than the at least one bin
coded with the context coded mode, at least another bin of the
binarized reference index value with a bypass coding mode of
the CABAC process.

In another example, aspects of this disclosure relate to an
apparatus for encoding a reference index syntax element in a
video encoding process that includes means for binarizing a
reference index value, means for encoding at least one bin of
the binarized reference index value with a context coding
mode of a context-adaptive binary arithmetic coding
(CABAC) process, and means for encoding, when the bina-
rized reference index value comprises more bins than the at
least one bin coded with the context coded mode, at least
another bin of the binarized reference index value with a
bypass coding mode of the CABAC process.

In another example, aspects of this disclosure relate to a
method for decoding a reference index syntax element in a
video decoding process that includes decoding at least one
bin of a reference index value with a context coding mode of
a context-adaptive binary arithmetic coding (CABAC) pro-
cess, decoding, when the reference index value comprises
more bins than the at least one bin coded with the context
coded mode, at least another bin of the reference index value
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with a bypass coding mode of the CABAC process, and
binarizing the reference index value.

In another example, aspects of this disclosure relate to an
apparatus for decoding a reference index syntax element in a
video decoding process that includes one or more processors
configured to decode at least one bin of a reference index
value with a context coding mode of a context-adaptive
binary arithmetic coding (CABAC) process, decode, when
the reference index value comprises more bins than the at
least one bin coded with the context coded mode, at least
another bin of the reference index value with a bypass coding
mode of the CABAC process, and binarize the reference
index value.

In another example, aspects of this disclosure relate to a
non-transitory computer-readable medium storing instruc-
tions thereon that, when executed cause one or more proces-
sors to decode at least one bin of a reference index value with
a context coding mode of a context-adaptive binary arith-
metic coding (CABAC) process, decode, when the reference
index value comprises more bins than the at least one bin
coded with the context coded mode, at least another bin of the
reference index value with a bypass coding mode of the
CABAC process, and binarize the reference index value.

The details of one or more examples are set forth in the
accompanying drawings and the description below. Other
features, objects, and advantages will be apparent from the
description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram illustrating an example video
encoding and decoding system.

FIG. 2 is a block diagram illustrating an example video
encoder.

FIG. 3 is a block diagram illustrating an example video
decoder.

FIG. 4 is a block diagram illustrating an example arith-
metic coding process.

FIG.5A is a block diagram illustrating an example string of
prediction data.

FIG. 5B is a block diagram illustrating another example
string of prediction data.

FIG. 6 is a block diagram illustrating another example
string of prediction data.

FIG. 7 is a block diagram illustrating another example
string of prediction data.

FIG. 8A is a block diagram illustrating context coding an
inter-prediction direction syntax element with three possible
values.

FIG. 8B is a block diagram illustrating bypass coding the
inter-prediction direction syntax element, according to
aspects of this disclosure.

FIG. 9 is a flowchart illustrating an example of entropy
encoding a reference index value, according to aspects of this
disclosure.

FIG. 10 is a flowchart illustrating an example of entropy
decoding a reference index value, according to aspects of this
disclosure.

FIG. 11 is a flowchart illustrating an example of entropy
encoding prediction data, according to aspects of this disclo-
sure.

FIG. 12 is a flowchart illustrating an example of entropy
decoding prediction data, according to aspects of this disclo-
sure.

DETAILED DESCRIPTION

A video coding device may compress video data by taking
advantage of spatial and temporal redundancy. For example,
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4

avideo encoder may take advantage of spatial redundancy by
coding a block relative to neighboring, previously coded
blocks. Likewise, a video encoder may take advantage of
temporal redundancy by coding a block relative to data of
previously coded pictures. In particular, the video encoder
may predict a current block from data of a spatial neighbor
(referred to as intra-coding) or from data of one or more other
pictures (referred to as inter-coding). The video encoder may
then calculate a residual for the block as a difference between
the actual pixel values for the block and the predicted pixel
values for the block. Accordingly, the residual for a block may
include pixel-by-pixel difference values in the pixel (or spa-
tial) domain.

A video coder may perform motion estimation and motion
compensation when inter-predicting a block of video data.
For example, motion estimation is performed at a video
encoder and includes calculating one or more motion vectors.
A motion vector may indicate the displacement of a block of
video data in a current picture relative to a reference sample of
a reference picture. A reference sample may be a block that is
found to closely match the block being coded in terms of pixel
difference, which may be determined by sum of absolute
difference (SAD), sum of squared difference (SSD), or other
difference metrics. The reference sample may occur any-
where within a reference picture or reference slice, and not
necessarily at a block boundary of the reference picture or
slice. In some examples, the reference sample may occur at a
fractional pixel position.

Data defining the motion vector may describe, for example,
a horizontal component of the motion vector, a vertical com-
ponent of the motion vector, a resolution for the motion vector
(e.g., one-quarter pixel precision or one-eighth pixel preci-
sion), a reference picture to which the motion vector points,
and/or a reference picture list (e.g., list 0 (L0), list 1 (L1) ora
combined list (L.C)) for the motion vector, e.g., as indicated
by a prediction direction. A reference index (ref_idx) may
identify the particular picture in the reference picture list to
which the motion vector points. In this manner, the ref_idx
syntax element serves as an index into a reference picture list,
e.g.,L0,L1orLC.

Upon identifying a reference block, the difference between
the original video data block and the reference block is deter-
mined. This difference may be referred to as the prediction
residual data, and indicates the pixel differences between the
pixel values in the block to the coded and the pixel values in
the reference block selected to represent the coded block. To
achieve better compression, the prediction residual data may
betransformed, e.g., using a discrete cosine transform (DCT),
an integer transform, a Karhunen-Loeve (K-L) transform, or
another transform. For further compression, the transform
coefficients may be quantized.

An entropy coder then entropy encodes symbols or syntax
elements associated with a block of video data and the quan-
tized transform coefficients. Examples of entropy coding
schemes include Context Adaptive Variable Length Coding
(CAVLC), Context Adaptive Binary Arithmetic Coding
(CABAC), Probability Interval Partitioning Entropy Coding
(PIPE), or the like. Prior to context coding, a video encoder
may convert an absolute value of each value being coded into
binarized form. In this way, each non-zero value being coded
may be “binarized,” e.g., using a unary coding table or other
coding scheme that converts a value to a codeword having one
or more bits, or “bins.”

With respect to CABAC, as an example, a video coder may
select a probability model (also referred to as a context
model) to code symbols associated with a block of video data.
For example, at the encoder, a target symbol may be coded by
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using the probability model. At the decoder, a target symbol
may be parsed by using the probability model. In some
instances, bins may be coded using a combination of context
adaptive and non-context adaptive coding. For example, a
video coder may use a bypass mode to bypass, or omit, the
regular arithmetic coding process for one or more bins, while
using context adaptive coding for other bins. In such
examples, the video coder may use a fixed probability model
to bypass code the bins. That is, bypass coded bins do not
include context or probability updates. In general, as
described in greater detail with respect to FIG. 4 below,
context coding bins may be referred to as coding the bins
using a context coding mode. Likewise, bypass coding bins
may be referred to as coding the bins using a bypass coding
mode.

A context model for coding a bin of a syntax element may
be based on values of related bins of previously coded neigh-
boring syntax elements. As one example, a context model for
coding a bin of a current syntax element may be based on
values of related bins of previously coded neighboring syntax
elements, e.g., on the top and to the left of the current syntax
element. The positions from which context is derived may be
referred to as a context support neighborhood (also referred to
as “context support”, or simply “support”). For example, with
respect to coding the bins of a significance map (e.g., indi-
cating the locations of non-zero transform coefficients in a
block of video data), a five point support may be is used to
define a context model.

In some examples, a context model (Ctx) may be an index
or offset that is applied to select one of a plurality of different
contexts, each of which may correspond to a particular prob-
ability model. Hence, in any case, a different probability
model is typically defined for each context. After coding the
bin, the probability model is further updated based on a value
of'the bin to reflect the most current probability estimates for
the bin. For example, a probability model may be maintained
as a state in a finite state machine. Each particular state may
correspond to a specific probability value. The next state,
which corresponds to an update of the probability model, may
depend on the value of the current bin (e.g., the bin currently
being coded). Accordingly, the selection of a probability
model may be influenced by the values of the previously
coded bins, because the values indicate, at least in part, the
probability of the bin having a given value. The context cod-
ing process described above may generally be referred to as a
context-adaptive coding mode.

The probability updating process described above may
delay into the coding process. For example, assume two bins
use the same context model (e.g., ctx(0)) for purposes of
context adaptive coding. In this example, a first bin may use
ctx(0) to determine a probability model for coding. The value
of the first bin influences the probability model associated
with ctx(0). Accordingly, a probability update must be per-
formed prior to coding the second bin with ctx(0). In this way,
the probability update may introduce delay into the coding
cycle.

With respect to video coding, as another example, a video
coder may context adaptively code a sequence of bins (e.g.,
bin(0), bin(1), . . . bin(n)) of a reference index (ref_idx). As
noted above, a reference index (ref_idx) may identify the
particular picture in the reference picture list to which the
motion vector points. A single reference index (ref_idx) may
include, for example, up to 15 bins. Assume for purposes of
explanation that the video coder derives three contexts for
coding the bins and applies the contexts based on the bin
number being coded (e.g., indicated using context indexes
ctx(0), ctx(1), and ctx(2)). That is, in this example, the video
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coder may use ctx(0) to code bin (0), ctx(1) to code bin(1),
and ctx(2) to code the remaining bins (e.g, bin(2) through
bin(n)).

Inthe example described above, the third context (ctx(2)) is
shared among a number of bins (e.g., up to 13 bins). Using the
same probability model to code bin (2) through bin(n) in this
way may create a delay between successive coding cycles.
For example, as noted above, repeatedly calling the same
context and waiting to update the model after each bin may
present a bottleneck for the throughput of the coder.

Moreover, the correlation between bin(2) and bin(n) may
not be sufficient to warrant the time and computational
resources associated with updating the probability model.
That is, one potential benefit of context adaptive coding is the
ability to adapt a probability model based on previously
coded bins (given the same context). If the value of a first bin,
however, has little relation to, or bearing on the value of a
subsequent bin, there may be little efficiency gain associated
with the probability update. Accordingly, bins exhibiting a
low correlation may not benefit from context adaptive coding
as much as bins having relatively higher correlations.

Aspects of this disclosure relate to efficiently context cod-
ing syntax elements associated with inter-coded video data.
For example, aspects of this disclosure relate to efficiently
coding reference index values, motion vector predictors,
motion vector difference values, and the like. In some
examples, a video coder may perform context coding for
some bins of a syntax element and bypass coding for other
bins of the syntax element.

With specific reference to the reference index coding
example described above, according to aspects of this disclo-
sure, the video coder may apply ctx(0) to bin(0), ctx(1) to
bin(1), ctx(2) to bin(2) and may bypass code the remaining
bins of the reference index value with no contexts required. In
other words, the video coder may use ctx(2) as the context for
CABAC coding bin(2) of a binarized reference index value,
but may bypass code any bins that follow bin(2).

Given that reference index values may be 15 bins or more
in length, limiting the number of bins that are context coded
in this way may produce a computational and/or time savings
versus context coding all of the reference index bins. More-
over, as noted above, the correlation between bits of a refer-
ence index value may not be high (e.g., the value of bin(3) of
the reference index value may not provide a useful indication
regarding the likelihood of bin(4) having a value ofa “1” or a
“0”), which reduces the benefit of context coding. Accord-
ingly, the amount of time and computational resources saved
by context coding fewer bins of a reference index value may
outweigh the coding efficiency gains associated with context
coding all bins of the reference index value.

Other aspects of this disclosure generally relate to group-
ing context coded bins and non-context coded bins during
coding. For example, as noted above, some syntax elements
may be coded using a combination of context coding and
bypass coding. That is, some syntax elements may have one
or more bins that are context coded and one or more other bins
that are bypass coded.

Assume, for purposes of example, that two syntax elements
each have a context coded portion (including one or more
context coded bins) and a bypass coded portion (including
one or more bypass coded bins). In this example, the video
coder may code the context coded portion of the first syntax
element, followed by the bypass coded portion of the first
syntax element, followed by the context coded portion of the
second syntax element, followed by the bypass coded portion
of the second syntax element.
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In the example described above, a video coder may switch
between a context coding mode and a bypass coding mode
three times to code the two syntax elements. For example, the
video coder switches between context coding and bypass
coding after the context coded bins of the first syntax element,
after the bypass coded bins of the first syntax element, and
after the context coded bins of the second syntax element.
Switching between context coding and bypass coding in this
way may be computationally inefficient. For example,
switching between context coding and bypass coding may
consume one or more clock cycles. Accordingly, switching
between context coding and bypass coding for each element
may introduce latency, due to the transitions between context
coding and bypass coding.

Aspects of this disclosure include grouping context coded
bins and non-context coded bins (e.g., bypass bins) during
coding. For example, with respect to the example described
above, according to aspects of this disclosure, a video coder
may code the context coded bins of the first syntax element,
followed by the context coded bins of the second syntax
element, followed by the bypass coded bins of the first syntax
element, followed by the bypass coded bins of the second
syntax element. Accordingly, the video coder only transitions
between a context coding mode and a bypass coding mode a
single time, e.g., between the context coded bins and the
non-context coded bins.

Grouping bins in this manner may reduce the frequency
with which a video coder switches between a context coding
mode and a bypass coding mode. Accordingly, aspects of this
disclosure may reduce latency when coding syntax elements
that include a combination of context coded bins and bypass
coded bins. In some examples, as described with respect to
FIGS. 5-8 below, bins associated with prediction data may be
grouped according to the techniques of this disclosure. For
example, as described herein, prediction data may generally
include data associated with inter-prediction. For example,
prediction data may include data indicating reference index
values, motion vectors, motion vector predictors, motion vec-
tor difference values, and the like.

FIG. 1 is a block diagram illustrating an example video
encoding and decoding system 10 that may be configured to
code prediction data in accordance with examples of this
disclosure. As shown in FIG. 1, the system 10 includes a
source device 12 that transmits encoded video to a destination
device 14 via a communication channel 16. Encoded video
datamay also be stored on a storage medium 34 or a file server
36 and may be accessed by the destination device 14 as
desired. When stored to a storage medium or file server, video
encoder 20 may provide coded video data to another device,
such as a network interface, a compact disc (CD), Blu-ray or
digital video disc (DVD) burner or stamping facility device,
or other devices, for storing the coded video data to the
storage medium. Likewise, a device separate from video
decoder 30, such as a network interface, CD or DVD reader,
or the like, may retrieve coded video data from a storage
medium and provided the retrieved data to video decoder 30.

The source device 12 and the destination device 14 may
comprise any of a wide variety of devices, including desktop
computers, notebook (i.e., laptop) computers, tablet comput-
ers, set-top boxes, telephone handsets such as so-called
smartphones, televisions, cameras, display devices, digital
media players, video gaming consoles, or the like. In many
cases, such devices may be equipped for wireless communi-
cation. Hence, the communication channel 16 may comprise
a wireless channel, a wired channel, or a combination of
wireless and wired channels suitable for transmission of
encoded video data. Similarly, the file server 36 may be
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accessed by the destination device 14 through any standard
data connection, including an Internet connection. This may
include a wireless channel (e.g., a Wi-Fi connection), a wired
connection (e.g., DSL, cable modem, etc.), or a combination
of both that is suitable for accessing encoded video data
stored on a file server.

Techniques for coding prediction data, in accordance with
examples of this disclosure, may be applied to video coding in
support of any of a variety of multimedia applications, such as
over-the-air television broadcasts, cable television transmis-
sions, satellite television transmissions, streaming video
transmissions, e.g., via the Internet, encoding of digital video
for storage on a data storage medium, decoding of digital
video stored on a data storage medium, or other applications.
In some examples, the system 10 may be configured to sup-
port one-way or two-way video transmission to support appli-
cations such as video streaming, video playback, video
broadcasting, and/or video telephony.

In the example of FIG. 1, the source device 12 includes a
video source 18, a video encoder 20, a modulator/demodula-
tor 22 and a transmitter 24. In the source device 12, the video
source 18 may include a source such as a video capture
device, such as a video camera, a video archive containing
previously captured video, a video feed interface to receive
video from a video content provider, and/or a computer
graphics system for generating computer graphics data as the
source video, or a combination of such sources. As one
example, if the video source 18 is a video camera, the source
device 12 and the destination device 14 may form so-called
camera phones or video phones. However, the techniques
described in this disclosure may be applicable to video coding
in general, and may be applied to wireless and/or wired appli-
cations, or application in which encoded video data is stored
on a local disk.

The captured, pre-captured, or computer-generated video
may be encoded by the video encoder 20. The encoded video
information may be modulated by the modem 22 according to
acommunication standard, such as a wireless communication
protocol, and transmitted to the destination device 14 via the
transmitter 24. The modem 22 may include various mixers,
filters, amplifiers or other components designed for signal
modulation. The transmitter 24 may include circuits designed
for transmitting data, including amplifiers, filters, and one or
more antennas.

The captured, pre-captured, or computer-generated video
that is encoded by the video encoder 20 may also be stored
onto a storage medium 34 or a file server 36 for later con-
sumption. The storage medium 34 may include Blu-ray discs,
DVDs, CD-ROMs, flash memory, or any other suitable digital
storage media for storing encoded video. The encoded video
stored on the storage medium 34 may then be accessed by the
destination device 14 for decoding and playback.

The file server 36 may be any type of server capable of
storing encoded video and transmitting that encoded video to
the destination device 14. Example file servers include a web
server (e.g., for a website), an FTP server, network attached
storage (NAS) devices, a local disk drive, or any other type of
device capable of storing encoded video data and transmitting
it to a destination device. The transmission of encoded video
data from the file server 36 may be a streaming transmission,
a download transmission, or a combination of both. The file
server 36 may be accessed by the destination device 14
through any standard data connection, including an Internet
connection. This may include a wireless channel (e.g., a Wi-
Fi connection), a wired connection (e.g., DSL, cable modem,
Ethernet, USB, etc.), or a combination of both that is suitable
for accessing encoded video data stored on a file server.
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The destination device 14, in the example of FIG. 1,
includes a receiver 26, a modem 28, a video decoder 30, and
a display device 32. The receiver 26 of the destination device
14 receives information over the channel 16, and the modem
28 demodulates the information to produce a demodulated
bitstream for the video decoder 30. The information commu-
nicated over the channel 16 may include a variety of syntax
information generated by the video encoder 20 for use by the
video decoder 30 in decoding video data. Such syntax may
also be included with the encoded video data stored on the
storage medium 34 or the file server 36. Each of the video
encoder 20 and the video decoder 30 may form part of a
respective encoder-decoder (CODEC) that is capable of
encoding or decoding video data.

The display device 32 may be integrated with, or external
to, the destination device 14. In some examples, the destina-
tion device 14 may include an integrated display device and
also be configured to interface with an external display
device. In other examples, the destination device 14 may be a
display device. In general, the display device 32 displays the
decoded video data to a user, and may comprise any of a
variety of display devices such as a liquid crystal display
(LCD), a plasma display, an organic light emitting diode
(OLED) display, or another type of display device.

In the example of FIG. 1, the communication channel 16
may comprise any wireless or wired communication medium,
such as a radio frequency (RF) spectrum or one or more
physical transmission lines, or any combination of wireless
and wired media. The communication channel 16 may form
part of a packet-based network, such as a local area network,
awide-area network, or a global network such as the Internet.
The communication channel 16 generally represents any suit-
able communication medium, or collection of different com-
munication media, for transmitting video data from the
source device 12 to the destination device 14, including any
suitable combination of wired or wireless media. The com-
munication channel 16 may include routers, switches, base
stations, or any other equipment that may be useful to facili-
tate communication from the source device 12 to the destina-
tion device 14.

The video encoder 20 and the video decoder 30 may oper-
ate according to a video compression standard, such as the
High Efficiency Video Coding (HEVC) standard presently
under development, and may conform to the HEVC Test
Model (HM). Alternatively, the video encoder 20 and the
video decoder 30 may operate according to other proprietary
or industry standards, such as the ITU-T H.264 standard,
alternatively referred to as MPEG-4, Part 10, Advanced Video
Coding (AVC), or extensions of such standards. The tech-
niques of this disclosure, however, are not limited to any
particular coding standard. Other examples include MPEG-2
and ITU-T H.263.

Although not shown in FIG. 1, in some aspects, video
encoder 20 and video decoder 30 may each be integrated with
an audio encoder and decoder, and may include appropriate
MUX-DEMUX units, or other hardware and software, to
handle encoding of both audio and video in a common data
stream or separate data streams. If applicable, in some
examples, MUX-DEMUX units may conform to the ITU
H.223 multiplexer protocol, or other protocols such as the
user datagram protocol (UDP).

Video encoder 20 and video decoder 30 each may be imple-
mented as any of a variety of suitable encoder or decoder
circuitry, as applicable, including a processor such as one or
more microprocessors, digital signal processors (DSPs), spe-
cial purpose processors or processing circuits, application
specific integrated circuits (ASICs), field programmable gate
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arrays (FPGAs), fixed logic circuitry, discrete logic, software,
hardware, firmware or any combinations thereof. Accord-
ingly, the various units within video encoder 20 and video
decoder 30 likewise may be implemented by any of a variety
of such structural elements or combinations thereof. When
the techniques are implemented partially in software, a device
may store instructions for the software in a suitable, non-
transitory computer-readable medium and execute the
instructions in hardware using one or more processors to
perform the techniques of this disclosure. Each of video
encoder 20 and video decoder 30 may be included in one or
more encoders or decoders, either of which may be integrated
as part of a combined encoder/decoder (CODEC) in a respec-
tive device.

This disclosure may generally refer to video encoder 20
“signaling” certain information to another device, such as
video decoder 30. It should be understood, however, that
video encoder 20 may signal information by associating cer-
tain syntax elements with various encoded portions of video
data. That is, video encoder 20 may “signal” data by storing
certain syntax elements to headers of various encoded por-
tions of video data. In some cases, such syntax elements may
be encoded and stored (e.g., stored to storage device 32) prior
to being received and decoded by video decoder 30. Thus, the
term “signaling” may generally refer to the communication of
syntax or other data for decoding compressed video data,
whether such communication occurs in real- or near-real-
time or over a span of time, such as might occur when storing
syntax elements to a medium at the time of encoding, which
then may be retrieved by a decoding device at any time after
being stored to this medium.

As noted above, the JCT-VC is working on development of
the HEVC standard. The HEVC standardization efforts are
based on an evolving model of a video coding device referred
to as the HEVC Test Model (HM). The HM presumes several
additional capabilities of video coding devices relative to
existing devices according to, e.g., [TU-T H.264/AVC. This
disclosure typically uses the term “video block™ to refer to a
coding node of a CU. In some specific cases, this disclosure
may also use the term “video block” to refer to a treeblock,
i.e., LCU, ora CU, which includes a coding node and PUs and
TUs.

A video sequence typically includes a series of video
frames or pictures. A group of pictures (GOP) generally com-
prises a series of one or more of the video pictures. A GOP
may include syntax data in a header of the GOP, a header of
one or more of the pictures, or elsewhere, that describes a
number of pictures included in the GOP. Each slice of a
picture may include slice syntax data that describes an encod-
ing mode for the respective slice. Video encoder 20 typically
operates on video blocks within individual video slices in
order to encode the video data. A video block may correspond
to a coding node within a CU. The video blocks may have
fixed or varying sizes, and may differ in size according to a
specified coding standard.

As an example and as noted above, the HM supports pre-
diction in various PU sizes (also referred to as PU types).
Assuming that the size of a particular CU is 2Nx2N, the HM
supports intra-prediction in PU sizes of 2Nx2N or NxN, and
inter-prediction in symmetric PU sizes of 2Nx2N, 2NxN,
Nx2N, or NxN. The HM also supports asymmetric partition-
ing for inter-prediction in PU sizes of 2NxnU, 2NxnD,
nl.x2N, and nRx2N. In asymmetric partitioning, one direc-
tion of a CU is not partitioned, while the other direction is
partitioned into 25% and 75%. The portion of the CU corre-
sponding to the 25% partition is indicated by an “n” followed
by an indication of “Up”, “Down,” “Left,” or “Right.” Thus,
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for example, “2NxnU” refers to a 2Nx2N CU that is parti-
tioned horizontally witha 2Nx0.5N PU on top and a 2Nx1.5N
PU on bottom. Other partitioning types are also possible.

In this disclosure, “NxN” and “N by N” may be used
interchangeably to refer to the pixel dimensions of a video
block in terms of vertical and horizontal dimensions, e.g.,
16x16 pixels or 16 by 16 pixels. In general, a 16x16 block will
have 16 pixels in a vertical direction (y=16) and 16 pixels in
a horizontal direction (x=16). Likewise, an NxN block gen-
erally has N pixels in a vertical direction and N pixels in a
horizontal direction, where N represents a nonnegative inte-
ger value. The pixels in a block may be arranged in rows and
columns. Moreover, blocks need not necessarily have the
same number of pixels in the horizontal direction as in the
vertical direction. For example, blocks may comprise NxM
pixels, where M is not necessarily equal to N.

Following intra-predictive or inter-predictive coding using
the PUs of a CU, video encoder 20 may calculate residual data
forthe TUs ofthe CU. The PUs may comprise pixel data in the
spatial domain (also referred to as the pixel domain) and the
TUs may comprise coefficients in the transform domain fol-
lowing application of a transform, e.g., a discrete cosine
transform (DCT), an integer transform, a wavelet transform,
or a conceptually similar transform to residual video data.
The residual data may correspond to pixel differences
between pixels of the unencoded, original picture and predic-
tion values corresponding to the PUs. Video encoder 20 may
form the TUs including the residual data for the CU, and then
transform the TUs to produce transform coefficients for the
CU.

In some examples, as noted above, TUs may be defined
according to an RQT. For example, an RQT may represent the
manner in which transforms (e.g., DCT, integer transform,
wavelet transform, or one or more other transforms) are
applied to the residual luma samples and the residual chroma
samples associated with a block of video data. That is, as
noted above, residual samples corresponding to a CU may be
subdivided into smaller units using an RQT. In general, the
RQT is a recursive representation of the partitioning ofa CU
into TUs.

Following application of any transforms to residual data to
produce transform coefficients, video encoder 20 may per-
form quantization of the transform coefficients. Quantization
generally refers to a process in which transform coefficients
are quantized to possibly reduce the amount of data used to
represent the coefficients, providing further compression.
The quantization process may reduce the bit depth associated
with some or all of the coefficients. For example, an n-bit
value may be rounded down to an m-bit value during quanti-
zation, where n is greater than m.

In some examples, video encoder 20 may utilize a pre-
defined scan order to scan the quantized transform coeffi-
cients to produce a serialized vector that can be entropy
encoded. In other examples, video encoder 20 may perform
an adaptive scan. After scanning the quantized transform
coefficients to form a one-dimensional vector, video encoder
20 may entropy encode the one-dimensional vector, e.g.,
according to context adaptive variable length coding
(CAVLC), context adaptive binary arithmetic coding
(CABAC), syntax-based context-adaptive binary arithmetic
coding (SBAC), Probability Interval Partitioning Entropy
(PIPE) coding or another entropy encoding methodology.
Video encoder 20 may also entropy encode syntax elements
associated with the encoded video data for use by video
decoder 30 in decoding the video data. A current version of
HEVC is designed to use CABAC for entropy coding.
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In some examples, video encoder 20 may code syntax
elements using a combination of context adaptive and non-
context adaptive coding. For example, video encoder 20 may
context code bins by selecting a probability model or “context
model” that operates on context to code the bins. In contrast,
video encoder 20 may bypass code bins by bypassing, or
omitting the regular arithmetic coding process when coding
the bins. In such examples, video encoder 20 may use a fixed
probability model to bypass code the bins.

As noted above, the probability model updating process
associated with context coding may introduce delay into the
coding process. For example, video encoder 20 may context
code a sequence of bins (e.g., bin(0), bin(1), . . . bin(n)) of a
reference index (ref_idx). A single reference index (ref_idx)
may include, for example, up to 15 bins. Assume for purposes
of explanation that video encoder 20 derives three contexts
for coding the bins and applies the contexts based on the bin
number being coded (e.g., indicated using context indexes
ctx(0), ctx(1), and ctx(2)). That is, in this example, video
encoder 20 may use ctx(0) to code bin (0), ctx(1) to code
bin(1), and ctx(2) to code the remaining bins (e.g, bin(2)
through bin(n)).

Inthe example described above, the third context (ctx(2)) is
shared among a number of bins (e.g., up to 13 bins). Using the
same probability model to code bin (2) through bin(n) in this
way may create a delay between successive coding cycles.
For example, repeatedly calling the same context and waiting
to update the model after each bin may present a bottleneck
for the throughput of the coder.

Moreover, the correlation between bin(2) and bin(n) may
not be sufficient to warrant the time and computational
resources associated with updating the probability model.
That is, one potential benefit of context adaptive coding is the
ability to adapt a probability model based on previously
coded bins (given the same context). If the value of a first bin,
however, has little relation to, or bearing on the value of a
subsequent bin, there may be little efficiency gain associated
with the probability update. Accordingly, bins exhibiting a
low correlation may not benefit from context adaptive coding
as much as bins having relatively higher correlations.

According to aspects of this disclosure, video encoder 20
may encode a reference index syntax element by coding at
least one bin of a binarized reference index value with a
context-adaptive binary arithmetic coding (CABAC) process,
and by coding at least another bin of the binarized reference
index value with a bypass coding mode of the context-adap-
tive binary arithmetic coding (CABAC) process.

In an example for purposes of illustration, video encoder
20 may apply ctx(0) to bin(0), ctx(1) to bin(1), ctx(2) to bin(2)
and may bypass code the remaining bins of the reference
index value with no contexts required. In other words, the
video coder may use ctx(2) as the context for CABAC coding
bin(2) of a binarized reference index value, but may bypass
code any bins that follow bin(2).

Given that reference index values may be 15 bins or more
in length, limiting the number of bins that are context coded
in this way may produce a computational and/or time savings
versus context coding all of the reference index bins. More-
over, as noted above, the correlation between bits of a refer-
ence index value may not be high (e.g., the value of bin(3) of
the reference index value may not provide a useful indication
regarding the likelihood of bin(4) having a value ofa “1” or a
“0”), which reduces the benefit of context coding. Accord-
ingly, the amount of time and computational resources saved
by context coding fewer bins of a reference index value may
outweigh the coding efficiency gains associated with context
coding all bins of the reference index value.
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According to other aspects of this disclosure, video
encoder 20 may group context coded bins and non-context
coded bins during encoding. For example, as noted above,
some syntax elements may be coded using a combination of
context coding and bypass coding. That is, some syntax ele-
ments may have one or more bins that are context coded and
one or more other bins that are bypass coded.

In some examples, video encoder 20 may switch between
context coding and bypass coding to code a sequence of
syntax elements. However, switching between context coding
and bypass coding may consume one or more clock cycles.
Accordingly, switching between context coding and bypass
coding for each element may introduce latency, due to the
transitions between context coding and bypass coding.

According to aspects of this disclosure, video encoder 20
may group context coded bins and non-context coded bins
(e.g., bypass bins) during coding. For example, video encoder
20 may context code bins associated with more than one
syntax element. Video encoder 20 may then bypass code bins
associated with the more than one syntax element. In other
examples, video encoder 20 may perform the bypass coding
prior to the context coding. In any event, the techniques allow
video encoder 20 to minimize transitions between context
coding and bypass coding. Accordingly, aspects of this dis-
closure may reduce latency when coding syntax elements that
include a combination of context coded bins and bypass
coded bins.

Video decoder 30, upon receiving the coded video data,
may perform a decoding pass generally reciprocal to the
encoding pass described with respect to video encoder 20. For
example, video decoder 30 may receive an encoded bitstream
and decode the bitstream. According to aspects of this disclo-
sure, for example, video decoder 30 may decode a reference
index syntax element by coding at least one bin of a binarized
reference index value with a context-adaptive binary arith-
metic coding (CABAC) process, and by coding at least
another bin of the binarized reference index value with a
bypass coding mode of the context-adaptive binary arithmetic
coding (CABAC) process.

According to other aspects of this disclosure, video
decoder 30 may decode a bitstream having grouped context
coded bins and non-context coded bins (e.g., bypass bins).
For example, video decoder 30 may decode context coded
bins associated with more than one syntax element. Video
decoder 30 may then decode bypass coded bins associated
with the more than one syntax element. In other examples,
video decoder 30 may perform the bypass coding prior to the
context coding (depending on the arrangement of bins in the
bitstream being decoded). In any event, the techniques allow
video decoder 30 to minimize transitions between context
coding and bypass coding. Accordingly, aspects of this dis-
closure may reduce latency when coding syntax elements that
include a combination of context coded bins and bypass
coded bins.

FIG. 2 is ablock diagram illustrating an example of a video
encoder 20 that may use techniques for coding prediction data
in accordance with examples of this disclosure. While aspects
of video encoder 20 are described in the context of HEVC
coding for purposes of illustration, the techniques of this
disclosure are not limited to any particular coding standard or
method that may require coding of prediction data.

Video encoder 20 may perform intra- and inter-coding of
CUs within video pictures. Intra-coding relies on spatial pre-
diction to reduce or remove spatial redundancy in video data
within a given picture. Inter-coding relies on temporal pre-
diction to reduce or remove temporal redundancy between a
current picture and previously coded pictures of a video
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sequence. Intra-mode (I-mode) may refer to any of several
spatial-based video compression modes. Inter-modes such as
uni-directional prediction (P-mode) or bi-directional predic-
tion (B-mode) may refer to any of several temporal-based
video compression modes.

As shown in FIG. 2, video encoder 20 receives a current
video block within a picture to be encoded. In the example of
FIG. 2, video encoder 20 includes a motion compensation
unit 44, a motion estimation unit 42, an intra-prediction unit
46, a reference picture memory 64, a summer 50, a transform
processing unit 52, a quantization unit 54, and an entropy
encoding unit 56. The transform processing unit 52 illustrated
in FIG. 2 is the unit that applies the actual transform or
combinations of transform to a block of residual data, and is
not to be confused with a block of transform coefficients,
which also may be referred to as a transform unit (TU) of a
CU. For video block reconstruction, video encoder 20 also
includes an inverse quantization unit 58, an inverse transform
processing unit 60, and a summer 62. A deblocking filter (not
shown in FIG. 2) may also be included to filter block bound-
aries to remove blockiness artifacts from reconstructed video.
If desired, the deblocking filter would typically filter the
output of summer 62.

During the encoding process, video encoder 20 receives a
picture or slice to be coded. The picture or slice may be
divided into multiple video blocks, e.g., largest coding units
(LCUs). Motion estimation unit 42 and motion compensation
unit 44 perform inter-predictive coding of the received video
block relative to one or more blocks in one or more reference
pictures to provide temporal compression. Intra-prediction
unit 46 may perform intra-predictive coding of the received
video block relative to one or more neighboring blocks in the
same picture or slice as the block to be coded to provide
spatial compression.

Mode select unit 40 may select one of the coding modes,
intra or inter, e.g., based on error (i.e., distortion) results for
each mode, and provides the resulting intra- or inter-predicted
block (e.g., a prediction unit (PU)) to summer 50 to generate
residual block data and to the summer 62 to reconstruct the
encoded block for use in a reference picture. Summer 62
combines the predicted block with inverse quantized, inverse
transformed data from inverse transform processing unit 60
for the block to reconstruct the encoded block, as described in
greater detail below. Some pictures may be designated as
I-frames, where all blocks in an I-frame are encoded in an
intra-prediction mode. In some cases, the intra-prediction
unit 46 may perform intra-prediction encoding ofa block ina
forward predicted picture (P-frame) or a bi-predicted picture
(B-frame), e.g., when the motion search performed by motion
estimation unit 42 does not result in a sufficient prediction of
the block.

Motion estimation unit 42 and motion compensation unit
44 may be highly integrated, but are illustrated separately for
conceptual purposes. Motion estimation (or motion search) is
the process of generating motion vectors, which estimate
motion for video blocks. A motion vector, for example, may
indicate the displacement of a prediction unit in a current
picture relative to a reference sample of a reference picture.
Motion estimation unit 42 calculates a motion vector for a
prediction unit of an inter-coded picture by comparing the
prediction unit to reference samples of a reference picture
stored in reference picture memory 64.

A predictive block (also referred to as a reference sample)
is a block that is found to closely match the block to be coded,
in terms of pixel difference, which may be determined by sum
of absolute difference (SAD), sum of square difference
(SSD), or other difference metrics. In some examples, video
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encoder 20 may calculate values for sub-integer pixel posi-
tions of reference pictures stored in reference picture memory
64, which may also be referred to as a reference picture buffer.
For example, video encoder 20 may interpolate values of
one-quarter pixel positions, one-cighth pixel positions, or
other fractional pixel positions of the reference picture.
Therefore, motion estimation unit 42 may perform a motion
search relative to the full pixel positions and fractional pixel
positions and output a motion vector with fractional pixel
precision.

Motion estimation unit 42 calculates a motion vector for a
PU of a video block in an inter-coded slice by comparing the
position of the PU to the position of a predictive block of a
reference picture. Accordingly, in general, data for a motion
vector may include a reference picture list, an index into the
reference picture list (ref_idx), a horizontal component, and a
vertical component. The reference picture may be selected
from a first reference picture list (List 0), a second reference
picture list (List 1), or a combined reference picture list (List
¢), each of which identify one or more reference pictures
stored in reference picture memory 64.

Motion estimation unit 42 may generate and send a motion
vector that identifies the predictive block of the reference
picture to entropy encoding unit 56 and motion compensation
unit 44. That is, motion estimation unit 42 may generate and
send motion vector data that identifies the reference picture
list containing the predictive block, an index into the refer-
ence picture list identifying the picture of the predictive
block, and a horizontal and vertical component to locate the
predictive block within the identified picture.

In some examples, rather than sending the actual motion
vector for a current PU, motion estimation unit 42 may pre-
dict the motion vector to further reduce the amount of data
needed to communicate the motion vector. In this case, rather
than encoding and communicating the motion vector itself,
motion estimation unit 42 may generate a motion vector
difference (MVD) relative to a known (or knowable) motion
vector. The MVD may include a horizontal component and a
vertical component corresponding to the horizontal compo-
nent and the vertical component of the known motion vector.
The known motion vector, which may be used with the MVD
to define the current motion vector, can be defined by a
so-called motion vector predictor (MVP). In general, to be a
valid MVP, the motion vector being used for prediction must
point to the same reference picture as the motion vector
currently being coded.

When multiple motion vector predictor candidates are
available (from multiple candidate blocks), motion estima-
tion unit 42 may determine a motion vector predictor for a
current block according to predetermined selection criteria.
For example, motion estimation unit 42 may select the most
accurate predictor from the candidate set based on analysis of
encoding rate and distortion (e.g., using a rate-distortion cost
analysis or other coding efficiency analysis). In other
examples, motion estimation unit 42 may generate an average
of the motion vector predictor candidates. Other methods of
selecting a motion vector predictor are also possible.

Upon selecting a motion vector predictor, motion estima-
tion unit 42 may determine a motion vector predictor index
(mvp_flag), which may be used to inform a video decoder
(e.g., such as video decoder 30) where to locate the MVP in a
reference picture list containing MVP candidate blocks.
Motion estimation unit 42 may also determine the MVD
(horizontal component and vertical component) between the
current block and the selected MVP. The MVP index and
MVD may be used to reconstruct the motion vector.
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In some examples, motion estimation unit 42 may instead
implement a so-called “merge mode,” in which motion esti-
mation unit 42 may “merge” motion information (such as
motion vectors, reference picture indexes, prediction direc-
tions, or other information) of predictive video block with a
current video block. Accordingly, with respect to merge
mode, a current video block inherits the motion information
from another known (or knowable) video block. Motion esti-
mation unit 42 may build a merge mode candidate list that
includes several neighboring blocks in spatial and/or tempo-
ral directions as candidates for merge mode. Motion estima-
tion unit 42 may determine an index value (e.g., merge_idx),
which may be used to inform a video decoder (e.g., such as
video decoder 30) where to locate the merging video block in
a reference picture list containing merging candidate blocks.

Intra-prediction unit 46 may intra-predict the received
block, as an alternative to inter-prediction performed by
motion estimation unit 42 and motion compensation unit 44.
Intra-prediction unit 46 may predict the received block rela-
tive to neighboring, previously coded blocks, e.g., blocks
above, above and to the right, above and to the left, or to the
left of the current block, assuming a left-to-right, top-to-
bottom encoding order for blocks. Intra-prediction unit 46
may be configured with a variety of different intra-prediction
modes. For example, intra-prediction unit 46 may be config-
ured with a certain number of directional prediction modes,
e.g., thirty-four directional prediction modes, based on the
size of the CU being encoded.

Intra-prediction unit 46 may select an intra-prediction
mode by, for example, calculating error values for various
intra-prediction modes and selecting a mode that yields the
lowest error value. Directional prediction modes may include
functions for combining values of spatially neighboring pix-
els and applying the combined values to one or more pixel
positions ina PU. Once values for all pixel positions in the PU
have been calculated, intra-prediction unit 46 may calculate
an error value for the prediction mode based on pixel differ-
ences between the PU and the received block to be encoded.
Intra-prediction unit 46 may continue testing intra-prediction
modes until an intra-prediction mode that yields an accept-
able error value is discovered. The intra-prediction unit 46
may then send the PU to summer 50.

Video encoder 20 forms a residual block by subtracting the
prediction data calculated by motion compensation unit 44 or
the intra-prediction unit 46 from the original video block
being coded. Summer 50 represents the component or com-
ponents that perform this subtraction operation. The residual
block may correspond to a two-dimensional matrix of pixel
difference values, where the number of values in the residual
block is the same as the number of pixels in the PU corre-
sponding to the residual block. The values in the residual
block may correspond to the differences, i.e., error, between
values of co-located pixels in the PU and in the original block
to be coded. The differences may be chroma or luma differ-
ences depending on the type of block that is coded.

Transform processing unit 52 may form one or more trans-
form units (TUs) from the residual block. Transform process-
ing unit 52 selects a transform from among a plurality of
transforms. The transform may be selected based on one or
more coding characteristics, such as block size, coding mode,
or the like. Transform processing unit 52 then applies the
selected transform to the TU, producing a video block com-
prising a two-dimensional array of transform coefficients.

Transform processing unit 52 may send the resulting trans-
form coefficients to quantization unit 54. Quantization unit 54
may then quantize the transform coefficients. Entropy encod-
ing unit 56 may then perform a scan of the quantized trans-
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form coefficients in the matrix according to a scanning mode.
This disclosure describes entropy encoding unit 56 as per-
forming the scan. However, it should be understood that, in
other examples, other processing units, such as quantization
unit 54, could perform the scan.

Once the transform coefficients are scanned into the one-
dimensional array, entropy encoding unit 56 may apply
entropy coding such as CAVLC, CABAC, syntax-based con-
text-adaptive binary arithmetic coding (SBAC), Probability
Interval Partitioning Entropy (PIPE), or another entropy cod-
ing methodology to the coefficients.

To perform CABAC, entropy encoding unit 56 may select
a context model to apply to a certain context to encode sym-
bols to be transmitted. The context may relate to, for example,
whether neighboring values are non-zero or not. Entropy
encoding unit 56 may also entropy encode syntax elements,
such as the signal representative of the selected transform.

Entropy encoding unit 56 may entropy encode prediction
data. When video data is inter-predicted, for example, predic-
tion data may include data indicating reference index values,
motion vectors, motion vector predictors, motion vector dif-
ference values, and the like. That is, as noted above, motion
estimation (by motion estimation unit 42) determines one or
more indexes to reference pictures (ref_idx) and a prediction
direction (pred_dir: forward, backward or bi-directional).
Entropy encoding unit 56 may entropy encode syntax ele-
ments representing motion vectors (e.g., a horizontal compo-
nent and vertical component of the motion vectors), reference
picture indexes, and prediction direction. Entropy encoding
unit 56 may include the encoded syntax elements into an
encoded video bitstream, which may then be decoded by a
video decoder (such as video decoder 30, described below)
for use in a video decoding process. That is, these syntax
elements may be provided for an inter-coded PU to permit
video decoder 30 to decode and reproduce video data defined
by a PU.

In some examples, as described in greater detail with
respect to FIG. 4 below, entropy encoding unit 56 (or another
coding unit of video encoder 20) may binarize syntax ele-
ments prior to entropy encoding the syntax elements. For
example, entropy encoding unit 56 may convert an absolute
value of each syntax element being coded into binary form.
Entropy encoding unit 56 may use a unary, truncated unary, or
other coding process to binarize the syntax elements. With
respect to reference index values, for example, if a maximum
number of reference pictures in a reference picture list is four,
i.e., the reference index (ref_idx) has a value ranging from O
to 3, then the following binarization in Table 1 may be
applied:

TABLE 1

Reference index Binarization

0

10
110
111

W N = O

As shown in Table 1, the binarized value ranges from one bit
to three bits, depending on the value of the reference index.
In some examples, entropy encoding unit 56 may entropy
encode reference index values using three different contexts
(e.g., ctx0, ctx1, and ctx2). For example, entropy encoding
unit 56 may entropy encode a first bin (bin0) and second bin
(binl) using ctx0 and ctx1, respectively, and a third bin (bin2)
and other bins are coded with context ctx2. In this example,
ctx2 is shared among all of the bins starting from and includ-
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ing bin2,1i.e., bin2 and bins after binb2, e.g., bin3, bind, and so
forth. In some examples, additional bins beyond bin2 may be
provided, e.g., if the maximum number of reference pictures
is greater than four.

As noted above, sharing the context ctx2 among bins may
be inefficient, due to the probability updates associated with
context coding. According to aspects of this disclosure,
entropy encoding unit 56 may CABAC code a reference index
value by dedicating ctx2 to coding bin2 and coding all bins
after bin2 using a bypass coding mode. Again, bypass coding
generally includes coding bins using a fixed probability (con-
texts are not required). For example, entropy encoding unit 56
may bypass code bins after bin2 of a reference index value
using Golomb coding, exponential Golomb coding, Golomb-
Rice coding, or other coding processes that bypass a CABAC
coding engine.

In another example, entropy encoding unit 56 may context
code fewer bins of a reference index value by removing ctx2.
That is, according to aspects of this disclosure, entropy
encoding unit 56 may encode bin2 and all later bins using a
CABAC bypass mode. In this example, entropy encoding unit
56 may CABAC code bin0 using context ctx0 and bin1 using
context ctx1, and may bypass code bin2 and other bins fol-
lowing bin2 using a CABAC bypass mode. Removing a con-
text in this way may reduce the overall complexity associated
with coding reference index values.

In yetanother example, entropy encoding unit 56 may code
fewer bins of a reference index value by removing both ctx1
and ctx2. That is, according to aspects of this disclosure,
entropy encoding unit 56 may encode binl and all later bins
using a CABAC bypass mode, thereby further reducing the
complexity associated with coding reference index values. In
this example, entropy encoding unit 56 may CABAC code
bin0 using context ctx0, and may bypass code binl, bin2, and
other bins following bin2 using a CABAC bypass mode.

Other aspects of this disclosure generally relate to the
manner in which entropy encoding unit 56 binarizes refer-
ence index values. For example, as noted above, entropy
encoding unit 56 may binarize reference index values using a
unary, truncated unary, or other coding process. In another
example, entropy encoding unit 56 may use an exponential-
Golomb coding process to binarize the reference index value.

In some examples, according to aspects of this disclosure,
entropy encoding unit 56 may implement a combination of
binarization processes. For example, as described in greater
detail with respect to FIG. 4 below, entropy encoding unit 56
may combine a unary (or truncated unary) coding process
with an exponential-Golomb coding process to binarize ref-
erence index values. In an example for purposes of illustra-
tion, entropy encoding unit 56 may combine a truncated
unary code of length (4) with an exponential-Golomb code
(e.g., an exponential-Golomb code of 0-order). In such an
example, entropy encoding unit 56 may binarize a first num-
ber of bins (e.g., the two, three, four, or the like) of a reference
index value using a unary coded, and may binarize the
remaining bins of the reference index using an exponential-
Golomb code.

In any case, entropy encoding unit 56 may implement the
techniques for context coding one or more bins of a reference
index value and bypass coding bins one or more other bins of
the reference index value with any binarization scheme. For
example, as noted above, entropy encoding unit 56 may con-
text code (e.g., CABAC code) a first number of bins of a
binarized syntax element and bypass code the remaining bins.
In the example described above in which a truncated unary
code of the length (4) is combined with an exponential
Golomb code of the 0-order, entropy encoding unit 56 may
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context code the first two bins (or any other number of bins)
of the truncated unary code and then bypass code the second
portion of the unary code and the entire exponential Golomb
code. In other examples, entropy encoding unit 56 may use
other binarization schemes. For example, entropy encoding
unit 56 may use a fixed length binary code instead of the
exponential Golomb code described in the above examples.

In some examples, entropy encoding unit 56 may truncate,
orremove bins from a binarized reference index value priorto
coding the value. Additionally or alternatively, entropy
encoding unit 56 may group bins coded using context and
bins coded using a bypass mode. For example, entropy encod-
ing unit 56 may code reference indexes of a B-picture by
context coding one or more bins of a first reference index
value, context code one or more bins of a second index value,
bypass code one or more other bins of the first reference index
value, and bypass code one or more other bins of the second
reference index value (in the order presented above). Accord-
ingly, entropy encoding unit 56 only transitions between a
context coding mode and a bypass coding mode a single time,
e.g., between the context coded bins and the non-context
coded bins.

Following the entropy coding by entropy encoding unit 56,
the resulting encoded video may be transmitted to another
device, such as video decoder 30, or archived for later trans-
mission or retrieval. Inverse quantization unit 58 and inverse
transform processing unit 60 apply inverse quantization and
inverse transformation, respectively, to reconstruct the
residual block in the pixel domain, e.g., for later use as a
reference block.

Motion compensation unit 44 may calculate a reference
block by adding the residual block to a predictive block of one
of the pictures of the reference picture memory 64. Motion
compensation unit 44 may also apply one or more interpola-
tion filters to the reconstructed residual block to calculate
sub-integer pixel values for use in motion estimation.

Summer 62 adds the reconstructed residual block to the
motion compensated prediction block produced by motion
compensation unit 44 to produce a reconstructed video block
for storage in reference picture memory 64. The recon-
structed video block may be used by motion estimation unit
42 and motion compensation unit 44 as a reference block to
inter-code a block in a subsequent picture.

FIG. 3 is ablock diagram illustrating an example of a video
decoder 30, which decodes an encoded video sequence. Inthe
example of FIG. 3, video decoder 30 includes an entropy
decoding unit 70, a motion compensation unit 72, an intra-
prediction unit 74, an inverse quantization unit 76, an inverse
transformation unit 78, a reference picture memory 82 and a
summer 80.

By way of background, video decoder 30 may receive
compressed video data that has been compressed for trans-
mission via a network into so-called “network abstraction
layer units” or NAL units. Each NAL unit may include a
header that identifies a type of data stored to the NAL unit.
There are two types of data that are commonly stored to NAL
units. The first type of data stored to a NAL unit is video
coding layer (VCL) data, which includes the compressed
video data. The second type of data stored to a NAL unit is
referred to as non-VCL data, which includes additional infor-
mation such as parameter sets that define header data com-
mon to a large number of NAL units and supplemental
enhancement information (SEI).

For example, parameter sets may contain the sequence-
level header information (e.g., in sequence parameter sets
(SPS)) and the infrequently changing picture-level header
information (e.g., in picture parameter sets (PPS)). The infre-
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quently changing information contained in the parameter sets
does not need to be repeated for each sequence or picture,
thereby improving coding efficiency. In addition, the use of
parameter sets enables out-of-band transmission of header
information, thereby avoiding the need of redundant trans-
missions for error resilience.

During the decoding process, video decoder 30 receives an
encoded video bitstream that represents video blocks of an
encoded video slice and associated syntax elements. In gen-
eral, entropy decoding unit 70 entropy decodes the bitstream
to generate quantized coefficients, motion vectors, and other
syntax elements. Video decoder 30 may receive the syntax
elements at the video slice level and/or the video block level.

For example, when a video slice is coded as an intra-coded
(D slice, intra prediction unit 74 may generate prediction data
for avideo block ofthe current video slice based on a signaled
intra prediction mode and data from previously decoded
blocks of the current picture. When the picture is coded as an
inter-coded (i.e., B, P or GPB) slice, motion compensation
unit 72 produces predictive blocks (also referred to as refer-
ence samples) for a video block of the current video slice
based on the motion vectors and other syntax elements
received from entropy decoding unit 70. The predictive
blocks may be produced from one of the reference pictures
within one of the reference picture lists. Video decoder 30
may construct the reference picture lists, List 0 and List 1,
using default construction techniques based on reference pic-
tures stored in reference picture memory 82.

Entropy decoding unit 70 may decode the bitstream using
the same process implemented at video encoder 20 (e.g.,
CABAC, CAVLC, etc.). The entropy coding process used by
the encoder may be signaled in the encoded bitstream or may
be a predetermined process. For example, entropy decoding
unit 70 may receive encoded binarized syntax elements.
Entropy decoding unit 70 may decode the bitstream (e.g.,
using a context adaptive mode or a bypass mode) and binarize
the decoded values to produce decoded syntax elements.

In some instances, entropy decoding unit 70 may entropy
decode prediction data. As noted above with respect to video
encoder 20, prediction data may include data indicating ref-
erence index values, motion vectors, motion vector predic-
tors, motion vector difference values, and the like. That is,
entropy decoding unit 70 may entropy decode syntax ele-
ments representing motion vectors (e.g., a horizontal compo-
nent and vertical component of the motion vectors), reference
picture indexes, and prediction directions. These syntax ele-
ments may be provided for an inter-coded PU to permit video
decoder 30 to decode and reproduce video data defined by a
PU.

In some examples, as noted above, entropy decoding unit
70 may entropy decode reference index values using three
different contexts (e.g., ctx0, ctx1, and ctx2). For example,
entropy decoding unit 56 may entropy decode a first bin
(bin0) and second bin (binl) using ctx0 and ctx1, respec-
tively, and decode a third bin (bin2) and other bins with
context ctx2. Sharing the context ctx2 among bins may be
inefficient, due to the probability updates associated with
context coding.

According to aspects of this disclosure, entropy decoding
unit 70 may CABAC code a reference index value by dedi-
cating ctx2 to coding bin2 and coding all bins after bin2 using
abypass coding mode. In another example, entropy decoding
unit 70 may context code fewer bins of a reference index value
by removing ctx2. That is, according to aspects of this dis-
closure, entropy decoding unit 70 may decode bin2 and all
later bins using a CABAC bypass mode. In yet another
example, entropy decoding unit 70 may code fewer bins of a
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reference index value by removing both ctx1 and ctx2. That
is, according to aspects of this disclosure, entropy decoding
unit 70 may decode binl and all later bins using a CABAC
bypass mode, thereby further reducing the complexity asso-
ciated with coding reference index values.

Other aspects of this disclosure generally relate to the
manner in which entropy decoding unit 70 binarizes refer-
ence index values. In some examples, entropy decoding unit
70 may binarize reference index values using a unary, trun-
cated unary, or other coding process. In another example,
entropy encoding unit 56 may use an exponential-Golomb
coding process to binarize the reference index value.

In some examples, according to aspects of this disclosure,
entropy decoding unit 70 may implement a combination of
binarization processes. For example, as described in greater
detail with respect to FIG. 4 below, entropy decoding unit 70
may combine a unary (or truncated unary) coding process
with an exponential-Golomb coding process to binarize ref-
erence index values. In an example for purposes of illustra-
tion, entropy decoding unit 70 may combine a truncated
unary code of length (4) with an exponential-Golomb code
(e.g., an exponential-Golomb code of 0-order). In such an
example, entropy decoding unit 70 may binarize a first num-
ber of bins (e.g., the two, three, four, or the like) of a reference
index value using a unary coded, and may binarize the
remaining bins of the reference index using an exponential-
Golomb code.

In any case, entropy decoding unit 70 may implement the
techniques for context coding one or more bins of a reference
index value and bypass coding bins one or more other bins of
the reference index value with any binarization scheme. For
example, as noted above, entropy decoding unit 70 may con-
text code (e.g., CABAC code) a first number of bins of a
binarized syntax element and bypass code the remaining bins.
In the example described above in which a truncated unary
code of the length (4) is combined with an exponential
Golomb code of the 0-order, entropy decoding unit 70 may
context code the first two bins (or any other number of bins)
of the truncated unary code and then bypass code the second
portion of the unary code and the entire exponential Golomb
code. In other examples, entropy decoding unit 70 may use
other binarization schemes. For example, entropy decoding
unit 70 may use a fixed length binary code instead of the
exponential Golomb code described in the above examples.

In some examples, entropy decoding unit 70 may truncate,
orremove bins from a binarized reference index value priorto
coding the value. Additionally or alternatively, entropy
decoding unit 70 may group bins coded using context and
bins coded using a bypass mode. For example, entropy decod-
ing unit 70 may code reference indexes of a B-picture by
context coding one or more bins of a first reference index
value, context code one or more bins of a second index value,
bypass code one or more other bins of the first reference index
value, and bypass code one or more other bins of the second
reference index value (in the order presented above). Accord-
ingly, entropy decoding unit 70 only transitions between a
context coding mode and a bypass coding mode a single time,
e.g., between the context coded bins and the non-context
coded bins.

After entropy decoding syntax elements and transform
coefficients, in some examples, entropy decoding unit 70 (or
inverse quantization unit 76) may scan received transform
coefficient values using a scan mirroring the scanning mode
used by the entropy encoding unit 56 (or quantization unit 54)
of' video encoder 20. Although shown as separate functional
units for ease of illustration, the structure and functionality of
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entropy decoding unit 70, inverse quantization unit 76, and
other units of video decoder 30 may be highly integrated with
one another.

Inverse quantization unit 76 inverse quantizes, i.c., de-
quantizes, the quantized transform coefficients provided in
the bitstream and decoded by entropy decoding unit 70. The
inverse quantization process may include a conventional pro-
cess, e.g., similar to the processes proposed for HEVC or
defined by the H.264 decoding standard. The inverse quanti-
zation process may include use of a quantization parameter
QP calculated by video encoder 20 for the CU to determine a
degree of quantization and, likewise, a degree of inverse
quantization that should be applied. Inverse quantization unit
76 may inverse quantize the transform coefficients either
before or after the coefficients are converted from a one-
dimensional array to a two-dimensional array.

Intra-prediction unit 74 may generate prediction data for a
current block of a current picture based on a signaled intra-
prediction mode and data from previously decoded blocks of
the current picture. Motion compensation unit 72 may
retrieve the motion vector, motion prediction direction and
reference index from the encoded bitstream. The reference
prediction direction indicates whether the inter-prediction
mode is uni-directional (e.g., a P-frame) or bi-directional (a
B-frame). The reference index indicates the reference picture
to which the motion vector is directed. Based on the retrieved
motion prediction direction, reference picture index, and
motion vector, the motion compensation unit produces a
motion compensated block for the current portion. These
motion compensated blocks are used to recreate the predic-
tive block used to produce the residual data.

Motion compensation unit 72 may produce the motion
compensated blocks, possibly performing interpolation
based on interpolation filters. Identifiers for interpolation fil-
ters to be used for motion estimation with sub-pixel precision
may be included in the syntax elements. Motion compensa-
tion unit 72 may use interpolation filters as used by video
encoder 20 during encoding of the video block to calculate
interpolated values for sub-integer pixels of a reference block.
Motion compensation unit 72 may determine the interpola-
tion filters used by video encoder 20 according to received
syntax information and use the interpolation filters to produce
predictive blocks.

Motion compensation unit 72 may receive prediction data
indicating where to retrieve motion information for a current
block. For example, motion compensation unit 72 may
receive motion vector prediction information such as an MVP
index (mvp_flag), an MVD, merge flag (merge_flag), and/or
merge index (merge_idx) and use such information to iden-
tify motion information used to predict a current block.

For example, motion compensation unit 72 may generate a
list of MVP or merge candidates. Motion compensation unit
72 may then use an MVP or merge index to identify the
motion information used to predict the motion vector of a
current block. That is, motion compensation unit 72 may
identify an MVP from a list of reference picture using the
MVP index (mvp_flag). Motion compensation unit 72 may
combine the identified MVP with a received MVD to deter-
mine the motion vector for the current block. In other
examples, motion compensation unit 72 may identify a merge
candidate from a list of reference pictures using a merge index
(merge_idx) to determine motion information for the current
block. In any event, after determining motion information for
the current block, motion compensation unit 72 may generate
the predictive block for the current block.

Additionally, motion compensation unit 72 and intra-pre-
diction unit 74, in an HEVC example, may use some of the
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syntax information (e.g., provided by a quadtree) to deter-
mine sizes of LCUs used to encode picture(s) of the encoded
video sequence. Motion compensation unit 72 and intra-pre-
diction unit 74 may also use syntax information to determine
split information that describes how each CU of a picture of
the encoded video sequence is split (and likewise, how sub-
CUs are split). The syntax information may also include
modes indicating how each split is encoded (e.g., intra- or
inter-prediction, and for intra-prediction an intra-prediction
encoding mode), one or more reference pictures (and/or ref-
erence lists containing identifiers for the reference pictures)
for each inter-encoded PU, and other information to decode
the encoded video sequence.

Summer 80 combines the residual blocks with the corre-
sponding prediction blocks generated by motion compensa-
tion unit 72 or intra-prediction unit 74 to form decoded
blocks. If desired, a deblocking filter may also be applied to
filter the decoded blocks in order to remove blockiness arti-
facts. The decoded video blocks are then stored in reference
picture memory 82, which provides reference blocks for sub-
sequent motion compensation and also produces decoded
video for presentation on a display device (such as the display
device 32 of FIG. 1).

FIG. 4 is a block diagram illustrating an example arith-
metic coding process. The example arithmetic coding process
of FIG. 4 is generally described as being performed by video
encoder 20. However, it should be understood that the tech-
niques described with respect to FIG. 4 may be performed by
a variety of other video coders, including video decoder 30.
For example, as noted above with respect to FIG. 3, video
decoder 30 may perform a decoding process that is reciprocal
to the process performed by video encoder 20.

The example of FIG. 4 includes a binarizer 100, a context
modeler 102, a coding engine 104, and a bypass coder 106.
Binarizer 100 is responsible for binarizing a received syntax
element. For example, binarizer 100 may map a syntax ele-
mentto anumber of so-called bins, with each bin representing
a binary value. In an example for purposes of illustration,
binarizer 100 may map a syntax element to bins using trun-
cated unary (TU) code. In general, unary coding may involve
generating a bin string of length N+1, where the first N bins
are 1 and the last bins is 0. Truncated unary coding may have
one less bin than unary coding by setting a maximum on the
largest possible value of the syntax element (cMax). An
example of truncated unary coding is shown in Table 2 with
cMax=10.

TABLE 2
Value Bin string
0 0
1 10
2 110
3 1110
4 11110
5 111110
6 1111110
7 11111110
8 111111110
9 1111111110
10 1111111111

When performed at video decoder 30, video decoder 30 may
search for a 0 to determine when the syntax element currently
being coded is complete. As described in greater detail below,
truncated unary coding is merely an example, and binarizer
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100 may perform a variety of other binarization processes (as
well as combinations of binarization processes) to binarize
syntax elements.

Context modeler 102 may be responsible for determining a
context model (also referred to as a probability model) for a
given bin. For example, context modeler 102 may select a
probability model that operates on context to code symbols
associated with a block of video data. In general, the prob-
ability model stores the probability of each bin being “1” or
“«”

Context modeler 102 may select the probability model
from a number of available probability models. In some
examples, as described in greater detail below, a context used
by context modeler 102 may be determined based on the bin
number being coded. That is, the context may depend on the
position of the bin in the bin string generated by binarizer 100.
In any event, at video encoder 20, a target symbol may be
coded by using the selected probability model. At video
decoder 30, a target symbol may be parsed by using the
selected probability model.

Coding engine 104 codes the bin using the determined
probability model (from context modeler 102). After coding
engine 104 codes the bin, coding engine 104 may update the
probability model associated with the context used to code the
bin. That is, the selected probability model is updated based
on the actual coded value (e.g. if the bin value was “1”, the
frequency count of a “1” is increased). Coding bins using
context modeler 102 and coding engine 104 may be referred
to as coding the bins using a context coding mode.

Bypass coder 106 codes bins using a fixed probability. In
contrast to the context coding (via context modeler 102 and
coding engine 104), bypass coder 106 does not update the
bypass coding process based on the actual values of the bins
being coded. Accordingly, in general, bypass coder 106 may
bypass code bins more quickly than context coding. Coding
bins using bypass coder 106 may be referred to as coding the
bins using a bypass coding mode. Example bypass coding
modes include Golomb coding, exponential Golomb coding,
Golomb-Rice coding, or any other suitable coding process
that bypasses context modeler 102 and coding engine 104.

Coded bins (from coding engine 104 and bypass coder
106) are combined to form a coded bitstream. To decode the
encoded bitstream, a video decoder (such as video decoder
30) may mirror the process shown in FIG. 4. That is, video
decoder 30 may preform context coding (using context mod-
eler 102 and coding engine 104) or bypass coding (using
bypass coder 106) on an encoded bitstream to generate a
decoded bin string. Video decoder 30 may then binarize the
bin string (using binarizer 100) to generate syntax values.

The arithmetic coding process show in FIG. 3 may be used
to code video data. For example, the coding process shown in
FIG. 3 may be used to code prediction data, including refer-
ence index values, motion vectors, motion vector predictors,
motion vector difference values, and the like.

In an example for purposes of illustration, binarizer 100
may binarize a reference index (ref_idx). In some examples,
the resulting bin string for the reference index may be up to 15
bins in length, depending on the number of reference pictures
that are available for reference. As noted above, in some
examples, all of the bins of a reference index value may be
context coded using context modeler 102 and coding engine
104. Moreover, one or more of the bins may share a context.
However, context coding all of the bins and sharing a context
among more than one bin may be inefficient, due to the
latencies associated with context coding.

According to aspects of this disclosure, as shown in FIG. 4,
video encoder 20 may encode a bin string for a reference
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index based on the bin number of the bin being coded. For
example, video encoder 20 may code a particular bin in a
reference index bin string according to a relative position of
the particular bin in the bin string. In an example, video
encoder 20 may context code a first, a second bin, and a third
bin of a reference index, and may bypass code the remaining
bins of the reference index. That is, video encoder 20 may
code a first bin (bin0) using context modeler 102 and coding
engine 104 with a first context ctx0, a second bin (bin1) using
context modeler 102 and coding engine 104 with a second
context ctx1, and a third bin (bin2) using context modeler 102
and coding engine 104 with a third context ctx2. However,
video encoder 20 may code the fourth bin (bin3) and any other
following bins using bypass coder 106.

In another example, video encoder 20 may reduce the
number of bins that are context coded. For example, video
encoder 20 may code a first bin (bin0) using context modeler
102 and coding engine 104 with a first context ctx0, and a
second bin (binl) using context modeler 102 and coding
engine 104 with a second context ctx1. In this example,
however, video encoder 20 may bypass code a third bin (bin2)
and any other following bins using bypass coder 106.

In still another example, video encoder 20 may further
reduce the number of bins that are context coded. For
example, video encoder 20 may code a first bin (bin0) using
context modeler 102 and coding engine 104 with a first con-
text ctx0. However, video encoder 20 may code the second
bin (binl) and any other following bins using bypass coder
106.

Aspects of this disclosure also relate to the manner in
which binarizer 100 performs binarization for video data. For
example, according to aspects of this disclosure, binarizer
100 may divide a syntax element into more than one part. That
is, binarizer 100 may use truncated unary coding to code a
prefix (with a relatively small cMax, as described above) and
may use another coding method to code the suffix. In an
example, binarizer 100 may use a kth order exponential-
Golomb code to code the suffix.

In some examples, only the bins of the prefix may be
context coded, while the bins of the suffix may be bypass
coded. Table 3 shows an example of truncated unary com-
bined code with an exponential-Golomb code, with cMax=4
for prefix and 07 order Exp-Golomb for suffix. These tech-
niques may also be applied to reference index values as well
as other syntax elements, such as motion vector difference
values or other syntax elements used in coding via advanced
motion vector prediction (AMVP).

TABLE 3
Bin string Bin string (0” order
Value (truncated unary) Exp-Golomb)
0 0
1 10
2 110
3 1110
4 1111 0
5 1111 100
6 1111 101
7 1111 11000
8 1111 11001
9 1111 11010
10 1111 11011

Inthe example shown in Table 3, the truncated unary bins may
be context coded, while the exponential-Golomb bins may be
bypass coded.
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The techniques of this disclosure may include, for
example, applying context coding to bins after a certain num-
ber of bins for the exponential-Golomb binarization in a
prefix part. The techniques of this disclosure also include, for
example, applying context based coding to a certain number
of bins (e.g., a predetermined number of prefix bins) and
applying bypass coding to the remaining bins. For example,
instead of coding all the bins in a prefix part using context,
bin2 and later bins in the prefix part may be coded with bypass
mode. In another example, bypass mode may be applied to all
bins after and/or including binl. In still another example,
bypass mode may be applied to all bins of the prefix part. A
similar approach using bypass mode coding after a certain
number of context coded bins can be used for any binarization
method. That is, while this disclosure describes using expo-
nential-Golomb and truncated unary coding schemes, other
binarization methods may be used.

In yet another example, the techniques of this disclosure
described above may be implemented in conjunction with
other binarization processes, including combinations of bina-
rization processes. That is, in one example, a unary coding
process may be used to binarize the reference index value. In
another example, a truncated unary coding process may be
used to binarize the reference index value. In still another
example, an exponential-Golomb coding process may be
used to binarize the reference index value. Other binarization
processes and combinations of binarization processes are also
possible. That is, for example, a unary (or truncated unary)
coding process may be combined with an exponential-
Golomb coding process to binarize the reference index value.
In an example for purposes of illustration, a truncated unary
code of length (4) can be combined with an exponential-
Golomb code (e.g., an exponential-Golomb code of 0-order).
In such an example, a first number ofbins (e.g., the two, three,
four, or the like) of the reference index value may be unary
coded, while the remaining bins of the reference index may be
exponential-Golomb coded.

In any case, the techniques described above with respect to
CABAC and bypass coding the reference index value may be
applied to any binarized reference index value. That is,
according to aspects of this disclosure, a first number of bins
of a binarized reference index value may be context coded
(e.g., coded with a CABAC engine), while the remaining bins
may be bypass coded. In the example described above, in
which a truncated unary code of the length (4) is combined
with an exponential Golomb code of the 0-order, the first two
bins (or any other number of bins) of the truncated unary code
may be context coded, and the second part of the unary code
and the entire exponential Golomb code may be bypass
coded.

It should be understood that the truncated unary code of
length (4) and exponential Golomb of 0-order are provided
for purposes of example only, and the same or similar tech-
niques may be applied for other truncated unary code lengths,
as well as for other orders of exponential Golomb code.
Moreover, the binarization processes described above are
provided for purposes of example only, and other binarized
codes may be used. For example, a fixed length binary code
may be used instead of the exponential Golomb code
described in the above examples. In addition, the example of
two context coded bins for the truncated unary binarization
portion is provided for purposes of illustration and other
numbers of context and bypass coded bins may be used.

In any case, aspects of this disclosure also relate to trun-
cating a portion of the binarized value. For example, because
the number of reference indexes is known in advance, accord-
ing to aspects of this disclosure, the exponential Golomb or
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fixed length code can be truncated. That is, an exponential
Golomb of order k may be used by binarizer 100. As an
example, an exponential Golomb of 0-order may be applied
in video compression. This binarization consists of an expo-
nential prefix coded with unary code and fixed length suffix of
the length (prefix-1), an example of which is shown in Table
4 below:

TABLE 4
Exponential
Golomb 0-

Element order Unary code Binary number
0 1 1 000
1 010 01 001
2 011 001 010
3 001 00 0001 011
4 00101 00001 100
5 001 10 000001 101
6 00111 0000001 110
7 0001 000 00000001 111
8 0001 001 000000001 S
9 0001 010 S

10 0001 011
11 0001 100
12 0001 101
13 0001 110
14 0001 111

00001 0000

For example, value 10 (e.g., which corresponds to element
with value 10 in the first column of Table 4) is represented by
the binarized codeword 0001011, where 0001 is a prefix and
011 is a suffix. The element may be input data, which is coded
using the codewords of Table 4 or using the tables shown and
described below. For example, video encoder 20 may receive
the elements and convert the elements into codewords accord-
ing to the tables shown and described below. Likewise, video
decoder 30 may receive the codewords and convert the code-
words into syntax elements (e.g., input data) according to the
tables shown and describe below.

A reconstructed value may be obtained according to equa-
tion (1), shown below:

value=2"(prefix—1)+suffix—1 (€8]

In this example, the prefix is represented by a unary code
where 0001 corresponds to 4, and the suffix is a value repre-
sented with a binary numeral system where 011 corresponds
to 3, as shown in Table 4 above. Accordingly, in this example,
applying equation (1) results in the following values:
2"(4-1)+3-1=10.

This code can represent generally infinite numbers; how-
ever, in some scenarios, the number of elements can be
known. In this case, the codeword can be shortened, taking
into account the maximum number of possible elements.

For example, if the maximum number of elements is two
(e.g., elements 0 and 1), a regular Exponential Golomb code-
word for 1 is 010. However, there is no element greater than
two. Accordingly, the regular code 010 can be shortened to 1.
This type of binarization may be referred to as Truncated
Exponential Golomb, and may be used in video coding stan-
dards such as H.264/AVC. However, with respect to the
H.264 standard, the Truncated Exponential Golomb is only
used when the maximum number of elements is 1. For other
cases, regular Exponential Golomb binarization is used.

According to aspects of this disclosure, regular Exponen-
tial Golomb coding may be further truncated, for example, in
amanner similar to the example above in which the maximum
number of elements is 1. Generally, when maximum number
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of'elements is known in advance, the suffix of the Exponential
Golomb binarization codeword can be truncated by removing
redundant bins. For example, if the maximum number of
elements is 9, then the two bins marked with bold, italics, and
underline in Table 5 shown below can be removed from the
codewords.

TABLE 5
Exponential Golomb 0- Truncated Exponential
Element order Golomb of order 0

0 1 1

1 010 010

2 011 011

3 001 00 001 00

4 00101 00101

5 001 10 001 10

6 00111 00111

7 0001 660 00010

8 0001 go1 01

That is, for element 7 shown in Table 5, the first two 00s of the
suffix may be removed. In addition, for element 8 shown in
Table 5, the first two 00s of the suffix may be removed.
Accordingly, the Truncated Exponential Golomb of order O
indicates the 0001 O for element 7 and 00001 1 for element 8.

The techniques described above may be implemented, for
example, by comparing a fixed length suffix for the latest
prefix (0001 in the above example) to the regular Exponential
Golomb code. For example, if number of elements in the
latest group is smaller than in a regular Exponential Golomb
code, the redundant bins can be removed. In other words,
binarizer 100 may generate the resulting truncated exponen-
tial Golomb code of order 0 by comparing the fixed length
suffix for the latest prefix, and if the number of elements in
this latest group is smaller than in regular Exponential
Golomb code, the redundant bins can be removed.

For instance, in this example, binarizer 100 may determine
the number of elements whose prefix is the same as the prefix
of the last element when there is a maximum number of
elements for coding thatis known in advance. For example, in
Table 5, the prefix for the last element is 0001, and there are
two elements (e.g., element 7 and element 8) whose prefix is
the same as the prefix of the last element when there are a
maximum number of elements (e.g., 9 in this example).

Binarizer may then compare the number of elements
whose prefix is the same as the prefix of the last element with
the number of elements in the regular Exponential Golomb
code with the same prefix. For example, in Table 4 above,
there are eight elements (i.e., element 7 to element 14) whose
prefix is 0001 (i.e., the same as the prefix of the previous
element). In this example, binarizer 100 may determine that
the number of elements whose prefix is the same as the prefix
of the last element is less than the number of elements in the
regular Exponential Golomb code with the same prefix.

When this is true, binarizer 100 may truncate bins from
codewords whose prefix is the same as the last prefix to
generate truncated codewords. In some examples, the bins are
truncated from the suffix; although, aspects of this disclosure
are not so limited. Binarizer 100 may determine the number
of bins to truncate based on the number of elements whose
prefix is the same as the last prefix.

For instance, in Table 5 above, there are two elements with
the same prefix as the last prefix (e.g., elements 7 and 8).
Binarizer 100 may truncate bins from codewords of elements
7 and 8 to generate truncated codewords, as illustrated in the
last column of Table 5. In this example, because there are two
elements with same prefix as the last prefix, binarizer 100
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may determine that only one bin is needed in the suffix to
represent the two elements. For example, a 0 in the suffix may
represent one element (e.g., element 7), and a 1 in the suffix
may represent another element (e.g., element 8). Accordingly,
for element 7 in Table 5 above, binarizer 100 may truncate the
first two bins of the suffix, leaving only 0 as the suffix for the
truncated codeword. Also, for element 8 in Table 5 above,
binarizer 100 may truncate the first two bins of the suffix,
leaving only 1 as the suffix for the truncated codeword.

30

As shown in Table 6, the first bins in the suffix for elements
7, 8,9, and 10 may be truncated (shown in bold, italics, and
underline). In this example, only one bin from the suffix may
be truncated, because four elements are represented by the
codeword. For this reason, in the truncated codewords, the
suffix starts from 00 and ends at 11 to cover four elements,
each with the same prefix.

The examples shown in Tables 5 and 6 above provide as
examples only, and the same process can be applied for any

The techniques described above may be implemented for 1 number of maximum elements. For instance, in some
coding media (such as encoding and/or decoding video data). examples, aspects of this disclosure relate to receiving trun-
For example, according to aspects of this disclosure, a video cated codewords. The truncated codewords may be generated
decoder, such as video decoder 30, may receive one or more by determining a first number of elements. The first number of
codewords representative of media data, and there may be a | elements may indicate how many codewords in a first coding
maximum number of elements that can be used for coding. table have a prefix that is the same as a prefix of a codeword
Video decoder 30 may convert the codewords to elements that corresponds to a last element in the first coding table
according to a coding table. The coding table may be con- when there are a maximum number of elements that can be
structed such that at least some of the codewords having the used for coding. In this example, the first coding table may be
same prefix are truncated when the same prefix is the last 20 Table 5 or Table 6. Aspects relate to receiving the truncated
prefix in the coding table, and the number of codewords codewords that are presorted or calculated on the fly during
having the same prefix is less than a maximum number of operation.
unique codewords that could have the same prefix. For Aspects of this disclosure also relate to determining a sec-
example, for prefix 0001, Table 4 illustrates unique possibili- ond number of elements that indicate how many codewords in
ties for codewords, and Tables 5 and 6 (shown below) show 25 a second coding table have a prefix that is the same as the
examples of codewords that share the same prefix and are prefix of the codewords that corresponds to the last element in
truncated according to the techniques of this disclosure. the first coding table. In this example, the second coding table

The techniques may also be performed by video encoder may be Table 4 above. In some examples, the first coding table
20. For example, video encoder 20 may receive one or more may be a subset of the second coding table, which is based on
elements representative of media data. Video encoder 20 may 39 he maximum number of elements that can be used for cod-
convert the elements into one or more codewords according to ing.

a coding table, and there may .be a maximum number of In some examples, when the first number of elements is
elements that can be used for coding. The coding table may be less than the second number of elements, aspects of this
constructed such that at least some of the codewords having  djsclosure relate to truncating bins from codewords in the first
the same prefix are truncated when the same prefix is the last 33 coding table whose prefix is the same as the prefix of the
preﬁx in the coding tal?le, and the numb.er of codewords codeword that corresponds to the last element in the first
haylng the same prefix is less than a maximum number of coding table to generate truncated codewords, and coding the
unique codewords that could have the same prefix. Again, for  video data using the truncated codewords. In some examples,
e.xample, for prefix 0001, Table 4 illustrates unique possibili- truncating the codewords includes truncating bins from suf-
ties for codewords, and Tables 5 and 6 (shown below) show %Y fixes or prefixes of the codewords, or a combination thereof.
examples of codewords that share the same prefix and are  In some examples, truncating bins is based on the first number
truncated according to the techniques of this disclosure. of elements, where the first number of elements indicates how
) In this manner, the teghmques may reduce t.he number of many codewords in a first coding table have a prefix that is the
bins needed for coding video data when a maximum number same as a prefix of a codeword that corresponds to a last
of elem.ents bemg.coded are known. The reduction 1n.b1ns 45 clement in the first coding table. In some examples, the cod-
results in fewer bits that need to be signaled or received, ing is Golomb coding.
resulting in bandwidth emciency. ) Alternatively or additionally, a prefix may also be short-

In yet another example, if maximum number of elements is ened using a truncated unary code. For example, if maximum
11, the Truncated Exponential Golomb codewords are shown number of elements is 4, then a prefix and a suffix can be
in Tab.le 6 below. The bins marked with bold, italics, and 530 {yncated as shown in Table 7 below.
underline in Table 6 can be removed from the codewords.

TABLE 7
TABLE 6
Exponential Truncated
Exponential Golomb 0- Truncated Exponential 55 Golomb 0- Exponential Golomb
Element order Golomb of order O Element order of order 0
0 1 1 0 1 1
1 010 010 1 010 010
2 011 011 2 011 011
3 001 00 001 00 6 3 00100 00
4 001 01 001 01
5 001 10 001 10
6 001 11 001 11 The truncated bins of Table 7 are represented in bold,
7 0001 g00 0001 00 italics, and underline. In the example shown in Table 7, the
g 888} g% 888} ?é codeword for the element 3 is shorter than the codewords for
10 0001 @11 0001 11 65 elements 1 or 2. Additional reordering or mapping for Trun-

cated Exponential Golomb binarization may be applied, for
example, by assigning shorter codeword 00 to more fre-
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quently occurring element 1 and 010 to element 3. Such
reordering or mapping may be performed using mapping
tables.

In some examples, reordering may also be based on the
appearance frequency of particular elements. For example,
shorter codewords may be assigned to the most frequently
appearing elements. This codeword mapping may be particu-
larly efficient in cases when the elements are ordered by the
frequency of appearance.

While certain examples above were described with respect
to Exponential Golomb of 0-order coding, it should be under-
stood that the techniques are more generally applicable to
Exponential Golomb of k-order coding. Moreover, the tech-
niques are not limited to HEVC video standard, and may be
applied to any video compression standard, or, more broadly,
for any application in which binarization is performed.

With respect to the emerging HEVC standard (as well as
extensions to the HEVC standard, such as scalable video
coding (SVC) or multi-view video coding (MVC)), the Trun-
cated Exponential Golomb binarization techniques described
above may be applied to binarize a variety of syntax elements.
Examples include reference index values, an intra-mode
mode, a merge index, quantization parameters (or delta quan-
tization parameters), or any other syntax element for which a
number of elements is known in advance.

While the above example describes Exponential Golomb
truncation, the truncation techniques described may also be
applied to a fixed length code. That is, in examples in which
a syntax element (e.g., a reference index) is binarized using
more than one binarization process (e.g., truncated unary and
Exponential Golomb), a predetermined number of bins may
be CABAC coded, while the remaining bins may be truncated
and bypass coded.

In some examples, an algorithm may be applied to deter-
mine the number of bins that may be truncated (e.g., truncated
from the Exponential Golomb or fixed length binarization
portion of the binarized syntax element). In an example,
assume that a predetermined number of bins remain to be
bypass coded. In this example, a video coder (such as video
encoder 20 or video decoder 30) may determine the number
of remaining bins that may be truncated by calculating a
rounded up log 2 of the remaining bins.

FIGS. 5A and 5B are block diagrams illustrating example
bin strings associated with prediction data. For example, F1G.
5A generally illustrates a reference index (ref__idx), a motion
vector difference (mvd), and a motion vector predictor index
(mvp_idx) for a picture that is predicted from a single refer-
ence picture.

FIG. 5B generally illustrates a first reference index (ref_
idx_L.0), a first motion vector difference (mvd_L.0) (repre-
senting the horizontal component and vertical component),
and a first motion vector predictor index (mvp_idx_I.0), as
well as a second reference index (ref_idx_I.1), a second
motion vector difference (mvd_L.1) (representing the hori-
zontal component and vertical component), and a second
motion vector predictor index (mvp_idx_I.1) for a picture
that is predicted from two reference pictures (a B-picture).
That is, for a bi-predicted PU, two reference indexes may be
coded, with one reference index for each list of list L0 and list
L1. Accordingly, up to two reference indexes may be coded
per PU, and up to eight indexes may be coded per CU.

Bin strings 120 (FIG. 5A) and 124 (FIG. 5B) include pre-
diction data associated with an advanced motion vector pre-
diction (AMVP) technique. With AMVP, a motion vector for
a block currently being coded may be coded as a difference
value (i.e., delta) relative to another motion vector, such as a
motion vector associated with a spatial or temporally neigh-
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boring block. For example, video encoder 20 may build a
motion vector predictor candidate list that includes motion
vectors associated with one or more neighboring blocks in
spatial and temporal directions. Video encoder 20 may select
the most accurate motion vector predictor (MVP) from the
candidate list based on, for example, a rate-distortion cost
analysis.

Video encoder 20 may indicate the reference picture for the
actual motion vector using the reference index (ref_idx). In
addition, video encoder 20 may indicate the selected MVP
using the motion vector predictor index (mvp_idx), which
identifies the MVP in the candidate list. Video encoder 20
may also indicate the difference between motion vector of the
current block (the actual motion vector) and the MVP using
the motion vector difference (mvd). As noted above, the mvd
may include a horizontal component and a vertical compo-
nent corresponding to the horizontal component and the ver-
tical component of the mvp.

Video decoder 30 may build a MVP candidate list in the
same way. Video decoder 30 may then use the received
motion vector predictor index (mvp_idx) to determine where
to locate the MVP in the candidate list. Video decoder 30 may
combine the motion vector difference (mvd) with the motion
vector predictor (determined using the motion vector predic-
tor index (mvp_idx)) so as to reconstruct the motion vector.

Predicting the motion vectors in this way (e.g., with a
difference value) may require fewer bits to be included in the
bitstream relative to coding actual motion vector(s). With
respect to FIG. 5B, bi-predicted pictures may include predic-
tion data associated with pictures from two different lists,
e.g., list 0 and list 1. As shown in the example of FIG. 5B, the
prediction data associated with list 0 may precede the predic-
tion data that is associated with list 1. That is, bin string 124
includes a first reference index (ref_idx_L.0), a first motion
vector difference (mvd_L.0) (e.g., representing both the hori-
zontal and vertical components), and a first motion vector
predictor index (mvp_idx_L.0), followed by a second refer-
ence index (ref_idx_[.1), a second motion vector difference
(mvd_IL.1) (e.g., representing both the horizontal and vertical
components), and a second motion vector predictor index
(mvp_idx_L1).

In some examples, syntax related to AMVP may be coded
using a combination of context coding and bypass coding. For
example, as shown in the examples of FIGS. 5A and 5B, some
of the bins of prediction data are context coded, while other
bins are bypass coded. That is, one or more bins of motion
vector difference values (as well as other values, such as
reference index values as described with respect to FIG. 7
below) may be context coded, while one or more other bins of
motion vector difference values may be bypass coded.

Withrespect to the example of FIG. 5A, the reference index
(ref_idx) and a first portion of the motion vector difference
(mvd) may be context coded, as indicated by context coded
bins 128. A second portion of the motion vector difference
(mvd) may be bypass coded, as indicated by bypass coded
bins 130. In addition, the motion vector predictor index
(mpv_idx) may be context coded, as indicated by context
coded bins 132.

With respect to the example of FIG. 5B, the first reference
index (ref_idx_I.0) and a first portion of the first motion
vector difference (mvd_L.0) (e.g., representing both the hori-
zontal and vertical components) may be context coded, as
indicated by context coded bins 136. A second portion of the
first motion vector difference (mvd_1.0) (e.g., representing
both the horizontal and vertical components) may be bypass
coded, as indicated by bypass coded bins 138. In addition, the
first motion vector predictor index (mpv_idx_L.0), the second
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reference index (ref_idx_[.1), and a first portion of the second
motion vector difference (mvd_L.1) (e.g., representing both
the horizontal and vertical components) may be context
coded, as indicated by context coded bins 140. A second
portion of the second motion vector difference (mvd_L.1)
(e.g., representing both the horizontal and vertical compo-
nents) may also be bypass coded, as indicated by bypass
coded bins 142. Finally, the second motion vector predictor
index (mpv_idx_I.1) may be context coded, as indicated by
context coded bins 144.

Accordingly, the example of FIG. 5B illustrates PU-based
inter mode syntax for bi-prediction for which a video coder
may have to switch four times between context coding and
bypass coding to process the bins. Switching between context
coding and bypass coding to code bins strings 120 and 124
may be inefficient. For example, switching between context
coding and bypass coding may consume one or more clock
cycles. Accordingly, switching between context coding and
bypass coding for each element may introduce latency, due to
the transitions between context coding and bypass coding.

According to aspects of this disclosure, as described in
greater detail with respect to FIGS. 6 and 7 below, context
bins and bypass bins may be grouped to reduce transitions
between context coding and bypass coding. For example,
with respect to FIG. 5A, aspects of this disclosure relate to
grouping context coded bins 128 and 132 together, such that
the bins are not separated by bypass coded bins 130. In this
way, a single transition may be made between context coding
and bypass coding during the coding of bin string 120.

Likewise, with respect to FIG. 5B, aspects of this disclo-
sure relate to grouping context coded bins 136, 140, and 144,
such that the bins are not separated by bypass coded bins 138
and 142. Again, grouping the context coded bins and bypass
coded bins in this way may allow a video coder (such as video
encoder 20 or video decoder 30) to make a single transition
between context coding and bypass coding. Avoiding mul-
tiple transitions between context coding and bypass coding
may increase efficiency by limiting the latency associated
with the transitions.

FIG. 6 is a block diagram illustrating another example bin
string 140 of prediction data. Bin string 140 includes a first
reference index (ref_idx_L.0), a first motion vector difference
(mvd_L.0) (e.g., representing both the horizontal and vertical
components), and a first motion vector predictor index
(mvp_idx_1.0), followed by a second reference index (ref_
idx_L.1), a second motion vector difference (mvd_L1) (e.g.,
representing both the horizontal and vertical components),
and a second motion vector predictor index (mvp_idx_L.1).
Bin string 140 includes context coded bins 144 and bypass
coded bins 148. For example, context coded bins 144 may be
coded using a context coding mode of a context adaptive
coding process (e.g., CABAC), while bypass coded bins 148
may be coded using a fixed probability (e.g., a CABAC
bypass coding mode).

According to aspects of this disclosure, the context coded
bins 144 are grouped for coding prior to bypass bins 148. That
is, in the example shown in FIG. 6, context coded bins 144
include context coded bins of a first reference index (ref_
idx_L.0), context coded bins of a second reference index
(ref_idx_I.1), context coded bins of a first motion vector
predictor index (mvp_idx_L.0), context coded bins of a sec-
ond motion vector predictor index (mvp_idx_I.1), context
coded bins of a first motion vector difference (mvd_L.0), and
context coded bins of a second motion vector difference
(mvd_I.1). In addition, bypass coded bins 148 include bypass
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coded bins of the first motion vector difference (mvd_[.0) and
bypass coded bins of the second motion vector difference
(mvd_L1).

In some examples, bins may be grouped based on the bin
numbers of the syntax elements being coded. In an example
for purposes of illustration, a video coder (such as video
encoder 20 or video decoder 30) may code the first two bins
of the motion vector difference values using context coding
and code the remaining bins using bypass coding. Accord-
ingly, in this example, context coded bins 144 may include the
first two bins of both the first motion vector difference
(mvd_L.0) and the second motion vector difference value
(mvd_L.1), while bypass coded bins 148 may include the
remaining bins of the motion vector difference values.

The ordering of syntax elements shown in FIG. 6 is pro-
vided for purposes of example only. In other examples, syntax
elements may be ordered differently, e.g., with reference
index values, motion vector predictors, and motion vector
difference values in an alternative order (or interleaved). That
is, in another example, a video coder may code a PU as
follows: context coded bins of reference index 1.0, context
coded bins of reference index L1, bypass mode coded bins of
reference index L0, bypass mode coded bins of reference
index L1. In still other examples, bypass bins 148 may be
coded prior to context coded bins 144.

In any case, FIG. 6 shows prediction data having a group of
one or more context coded bins 144 and a group of one or
more bypass coding bins 148. Grouping the context coded
bins and bypass coded bins in this way may, as noted above,
reduce latency associated with coding the bins. For example,
a video coder may code all of the context coded bins 144,
make a single transition from context coding to bypass cod-
ing, and code all of the bypass coded bins. Avoiding multiple
transitions between context coding and bypass coding may
increase efficiency by limiting the latency associated with
transitioning between context coding and bypass coding.

In some examples, as shown in FIG. 6, context coded bins
and bypass coded bins may be grouped for a block of video
data (e.g., on a per-PU basis). In other examples, context
coded bins and bypass coded bins may be grouped for CUs
(e.g., one or more CUs of an LCU), for an entire LCU, or for
an entire slice of video data. In such examples, context coded
bins may be grouped and coded for a CU/L.CUY/slice prior to
bypass coded bins of the CU/LCU/slice, or vice versa.

FIG. 7 is a block diagram illustrating another example bin
string 160 of prediction data. In the example of FIG. 7, bin
string 160 includes a first reference index (ref_idx_1.0), a first
motion vector difference (mvd_L0) (e.g., representing both
the horizontal and vertical components), and a first motion
vector predictor index (mvp_idx_I.0), followed by a second
reference index (ref_idx_I.1), a second motion vector differ-
ence (mvd_L.1) (e.g., representing both the horizontal and
vertical components), and a second motion vector predictor
index (mvp_idx_I.1). Bin string 160 includes context coded
bins 164 and bypass coded bins 168. For example, context
coded bins 164 may be coded using a context coding mode of
a context adaptive coding process (e.g., CABAC), while
bypass coded bins 168 may be coded using a fixed probability
(e.g., a CABAC bypass coding mode).

According to aspects of this disclosure, similar to the
example shown in FIG. 6, context coded bins 164 are grouped
for coding prior to bypass bins 168. However, in the example
shown in FIG. 7, the reference indexes (ref idx_[.0 and
ref_idx_I.1) include a combination of context coded bins as
well as bypass coded bins. That is, the reference indexes may
be coded according to the examples described with respect to
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FIG. 4 above, with one or more bins being coded using a
context adaptive mode and one or more other bins being
coded using a bypass mode.

Accordingly, in the example of FIG. 7, context coded bins
164 include context coded bins of a first reference index
(ref_idx_L.0), context coded bins of a second reference index
(ref_idx_I.1), context coded bins of a first motion vector
predictor index (mvp_idx_L.0), context coded bins of a sec-
ond motion vector predictor index (mvp_idx_I.1), context
coded bins of a first motion vector difference (mvd_L.0) (e.g.,
representing both the horizontal and vertical components),
and context coded bins of a second motion vector difference
(mvd_I.1) (e.g., representing both the horizontal and vertical
components). In addition, bypass coded bins 168 include
bypass coded bins of the first reference index (ref_idx_L.0),
bypass coded bins of the second reference index (ref_
idx_L.1), bypass coded bins of the first motion vector differ-
ence (mvd_I.0) and bypass coded bins of the second motion
vector difference (mvd_L1).

As described above with respect to FIG. 6, bins may be
grouped based on the bin numbers of the syntax elements
being coded. In an example for purposes of illustration, a
video coder (such as video encoder 20 or video decoder 30)
may code the first two bins of the motion vector difference
values using context coding and code the remaining bins
using bypass coding. In addition, the video coder may code
the first two bins of the reference indexes using context cod-
ing and code the remaining bins using bypass coding. Accord-
ingly, in this example, context coded bins 144 may include the
first two bins of both the first motion vector difference
(mvd_L.0) and the second motion vector difference value
(mvd_I.1), and the first two bins of both the first reference
index (ref_idx_I.0) and second reference index (ref_idx_L.1).
Bypass coded bins 148 may include the remaining bins of the
motion vector difference values and reference indexes.

Grouping the context coded bins and bypass coded bins
may reduce latency associated with coding the bins. For
example, a video coder may code all ofthe context coded bins
144, make a single transition from context coding to bypass
coding, and code all of the bypass coded bins. Avoiding
multiple transitions between context coding and bypass cod-
ing may increase efficiency by limiting the latency associated
with transitioning between context coding and bypass coding.

It should be understood that the techniques described with
respect to FIGS. 6 and 7 may be performed using any bina-
rization scheme. Moreover, as noted above, the ordering of
syntax elements is provided for purposes of example only. In
addition, context coded bins and bypass coded bins may be
grouped for a PU, for one or more CUs, for an entire LCU, or
for an entire slice of video data. In such examples, context
coded bins may be grouped and coded for a PU/CU/LCU/
slice prior to bypass coded bins of the PU/CU/LCU/slice, or
vice versa.

FIGS. 8A and 8B generally illustrate coding an inter-pre-
diction direction syntax element. For example, as noted
above, in addition to calculating the motion vector, motion
estimation also determines the index of the reference frame
(ref_idx) and the prediction direction for B-slices (inter_
pred_idc: forward from L0, backward from [.1, or bi-direc-
tional, or inter_pred_flag: uni-direction from [.C or bi-direc-
tion from [0 and [.1). The motion vector (e.g., a horizontal
component and vertical component of the motion vector),
reference frame index, and prediction direction are typically
entropy encoded by the encoder as syntax elements, and
placed in the encoded video bitstream to be decoded by a
video decoder for use in the video decoding process. These
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syntax elements may be provided for an inter-coded PU to
permit the decoder to decode and reproduce video data
defined by a PU.

In some instances, list L0 and list L1 references indices
may be used to signal reference indices for a bi-direction
prediction mode (Pred_BI), and a combined list (LC) refer-
ence index is used to signal a reference index for a uni-
direction prediction mode (Pred_L.C). The LC reference
index is the reference index of the combined reference picture
list, which includes a combination of reference pictures from
the lists L0 and L1 with duplicated reference pictures
removed according to a predefined rule (or explicit signal-
ing). The L.C reference index, therefore, maps to a reference
index for one of List L0 or L1.

In such instances, the inter-prediction direction syntax ele-
ment (inter_pred_flag) only has two possible values (bi-di-
rection or uni-direction from L.C). When the inter-prediction
direction syntax element is binarized, only one bin may need
to be coded to indicate the inter-prediction direction as either
bi-direction or uni-direction. Table 8, shown below, illustrates
the inter-prediction direction syntax element:

TABLE 8

Name of inter_ pred

slice__type inter_pred_ flag flag

P inferred Pred_LO

B 0 Pred_LC
1 Pred_ BI

In other examples, as proposed in a submission by T. Lee
and J. Park, “On Reference List Combination,” JCTVC-
10125, Geneva, April 2012, the combined list (LC) may be
removed. In such examples, instead using an inter-prediction
direction syntax element (inter_pred_flag or inter_pred_idc)
with three possible values (bi-direction, uni-directional from
L0, or uni-direction from [.1). When the prediction mode is
the uni-direction prediction mode, an additional bin indicat-
ing either Pred_1.0 or Pred_I.1 may need to be coded.

Table 9 illustrates the change in the inter-prediction direc-
tion syntax element coding (relative to Table 8 above):

TABLE 9

Name of inter_ pred

slice_type inter__pred_ide ide

P inferred Pred_LO

B 0 Pred_LO
1 Pred_ L1
2 Pred_ BI

FIG. 8A illustrates the coding structure described above
with respect to Table 9. As shown in FIG. 8A, the inter-
prediction direction syntax element (inter_pred_flag) may be
coded with a CABAC process using two bins. The first bin
(bin(0)) indicates whether the inter-prediction mode is uni-
direction (bin(0)=0) or bi-direction (pred_BI) (bin(0)=1).
The second bin is conditionally coded only if the first bin
indicates the uni-direction prediction mode. The second bin
(bin(1)) indicates whether the uni-direction prediction mode
is from List0 (pred_L0) (bin(1)=0) or from Listl (pred_L.1)
(bin(1)=1).

The context model index derivation for the inter-prediction
direction having only two possible values (bi-direction or
uni-direction from LC) may be determined based on CU
depth, which can have values in arange 0. . . 3 for the first bin
(bin0), as shown in the equation below:

ctxIdx=cuDepth
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In the example of FIG. 8A, the second bin (bin(1)) may be
coded with additional context, or may be coded by reusing
one context of the first bin (bin(0)). However, introducing an
additional context may increase the complexity associated
with coding the inter-prediction direction syntax element.
Moreover, reusing one of the contexts of the first bin may
reduce the number of contexts used for coding bin0, and the
video coder must perform an extra check for this condition.

FIG. 8B is a block diagram illustrating bypass coding the
inter-prediction direction syntax element, according to
aspects of this disclosure. As shown in FIG. 8B, the first bin
(bin(0)) of the inter-prediction direction syntax element (in-
ter_pred_flag) may be context coded with a CABAC process,
and the second bin (bin(1)) may be coded with a bypass mode
of the CABAC process. The first bin (bin(0)) indicates
whether the inter-prediction mode is uni-direction (bin(0)=0)
or bi-direction (pred_BI) (bin(0)=1). In this example, bin(0)
may be coded using one of four possible contexts,
ctxIdx=0...3. The second bin (bin(1)) may be conditionally
coded only if the first bin indicates the uni-direction predic-
tion mode. The second bin (bin(1)) indicates whether the
uni-direction prediction mode is from List0 (pred_LO0)
(bin(1)=0) or from List1 (pred_L.1) (bin(1)=1). According to
aspects of this disclosure, bin(1) may be coded using no
contexts (e.g., coded using a bypass mode of the CABAC
process).

In this way, according to aspects of this disclosure, a video
coder (e.g., video encoder 20 or video decoder 30), may
binarize an inter-prediction direction value and code at least
one bin of the binarized inter-prediction direction value with
abypass mode. More specifically, the video coder may select
a context to context code the first bin (bin(0)) for the inter-
prediction direction value with a CABAC process, and code
the second bin (bin(1)) with a bypass mode of the CABAC
process. Alternatively, the techniques enable the video coder
to code the first bin (bin(0)) for the inter-prediction direction
value with the bypass mode and also code the second bin
(bin(1)) with the bypass mode. Accordingly, the four contexts
available to code bin(0), ctxIdx=0 . . . 3, may be saved.

The techniques enable coding of the inter-prediction direc-
tion syntax element with three possible values (bi-direction,
uni-directional from L0, or uni-direction from [.1) without
requiring any extra context or reusing context (e.g., context of
bin0). Moreover, the techniques use the bypass mode with no
contexts required, which may be less computationally com-
plex than context coding.

FIG. 9 is a flowchart illustrating an example of entropy
encoding a reference index value, according to aspects of this
disclosure. Although generally described as performed by
components of video encoder 20 (FIGS. 1 and 2) for purposes
of explanation, it should be understood that other video cod-
ing units, processors, processing units, hardware-based cod-
ing units such as encoder/decoders (CODECs), and the like,
may also be configured to perform the process of FIG. 9.

In the example of FIG. 9, video encoder 20 binarizes a
received syntax element (180). Video encoder 20 may bina-
rize the syntax element according to any of the binarization
processes described in this disclosure. Example binariazation
processes include unary, truncated unary, exponential-
Golomb, or the like.

Video encoder 20 determines whether the binarized syntax
element is a reference index value (182). Again, a reference
index value generally identifies a reference picture in a refer-
ence picture list for purposes of inter-prediction. If the bina-
rized syntax element is a reference index value (the “yes”
branch of step 182), video encoder 20 may encode at least one
bin of the binarized reference index value using context adap-
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tive coding, such as CABAC (184). In addition, video encoder
20 may encode at least another bin of the binarized reference
index value (in instances in which there are additional bins to
be coded) using bypass coding, which bypasses the context
adaptive coding engine (186).

As described above with respect to FIG. 4, video encoder
20 may, in some examples, code one, two, or three bins using
context coding. For the context coded bins, video encoder 20
may select a context based a relative position of the bin in the
bin string. For example, video encoder 20 may select a con-
text for a first bin that is different than a context for a second
bin.

In any case, video encoder 20 may combine the context
coded bins and bypass coded bins to form an encoded bit-
stream 188. In some examples, if the syntax element being
coded is not a reference index value (the “no” branch of step
182), video encoder 20 may select a particular coding mode
(e.g., bypass or context adaptive) to code the syntax element
(190). Video encoder 20 may encode the syntax element using
the selected mode (192) and form an encoded bitstream (188).

It should also be understood that the steps shown and
described with respect to FIG. 9 are provided as merely one
example. That is, the steps of the method of FIG. 9 need not
necessarily be performed in the order shown in FIG. 9, and
fewer, additional, or alternative steps may be performed. For
example, video encoder 20 may, in some instances, determine
whether the syntax element is a reference index (step 182)
prior to binarizing the syntax element (step 180).

FIG. 10 is a flowchart illustrating an example of entropy
decoding a reference index value, according to aspects of this
disclosure. Although generally described as performed by
components of video decoder 30 (FIGS. 1 and 3) for purposes
of explanation, it should be understood that other video cod-
ing units, processors, processing units, hardware-based cod-
ing units such as encoder/decoders (CODECs), and the like,
may also be configured to perform the process of FIG. 12.

Video decoder 30 may initially parse a coded syntax ele-
ment from an encoded bitstream (200). For example, video
decoder 30 may read and segment a coded syntax element
from an encoded bitstream according to a particular parsing
process (e.g., wavefront parsing). The coded syntax element
may include a plurality of coded bins, i.e., binary values.

Video decoder 30 may also determine whether portion of
the bitstream currently being decoded is a reference index
value (202). If video decoder 30 is decoding a reference index
value (the “yes” branch of step 202), video decoder 30 may
decode at least one bin using context adaptive coding (206).
In addition, video decoder 30 may decode at least another bin
(in instances in which there are additional bins to be coded)
using bypass coding (208). As noted above with respect to
FIG. 9, video decoder 30 may, in some examples, code one,
two, or three bins using context coding. For the context coded
bins, video decoder 30 may select a context based a relative
position of the bin in the bin string. For example, video
decoder 30 may select a context for a first bin that is different
than a context for a second bin.

After decoding the bins to produce decoded binary values,
video decoder 30 may binarize the decoded bin string to
produce a decoded syntax element (208). For example, video
decoder 30 may map the decoded bin string to a syntax
element using a predetermined process. That is, in some
instances, video decoder 30 may receive an indication that a
particular bin is the final bin for a syntax element. Upon
completing the syntax element, then, video decoder 30 may
map the bin string to a syntax element using a binarization
table.
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In some examples, if the syntax element being coded is not
a reference index value (the “no” branch of step 202), video
decoder 30 may select a particular coding mode (e.g., bypass
or context adaptive) to code the syntax element (210). Video
decoder 30 may decode the syntax element using the selected
mode (212) and binarize the decoded bin string (208).

It should also be understood that the steps shown and
described with respect to FIG. 10 are provided as merely one
example. That is, the steps of the method of FIG. 10 need not
necessarily be performed in the order shown in FIG. 10, and
fewer, additional, or alternative steps may be performed.

FIG. 11 is a flowchart illustrating an example of entropy
encoding prediction data, according to aspects of this disclo-
sure. Although generally described as performed by compo-
nents of video encoder 20 (FIGS. 1 and 2) for purposes of
explanation, it should be understood that other video coding
units, processors, processing units, hardware-based coding
units such as encoder/decoders (CODECs), and the like, may
also be configured to perform the process of FIG. 9.

In the example of FIG. 11, video encoder 20 may binarize
one or more syntax elements currently being coded (220). For
example, video encoder 20 may binarize prediction data
including one or more reference indexes, motion vectors,
motion vector predictors, motion vector predictor indexes,
motion vector difference values, and the like.

In any case, video encoder 20 may determine whether the
syntax elements being coded include bins for context coding
and bins for bypass coding (222). That is, video encoder 20
may determine whether the bins of a syntax element are coded
using a mix of context adaptive coding and bypass coding. If
there is a mix of both context coding and bypass coding (the
“yes” branch of step 222), video encoder 20 may group con-
text coded bins and bypass coded bins (224). For example,
video encoder 20 may separate the context coded bins from
the bypass coded bins.

Video encoder 20 may then encode the context coded bins
using, for example, a context adaptive coding process (e.g.,
such as CABAC) (226). In addition, video encoder 20 may
encode the bypass coded bins using a bypass mode (226). The
bypass mode may bypass the context adaptive coding engine
and use a fixed probability to code the bins.

If the syntax element being coded does not include both
context coded bins and bypass coded bins (the “no” branch of
step 222), video encoder 20 may select a particular coding
mode (e.g., bypass or context adaptive) to code the syntax
element (230). Video encoder 20 may then encode the syntax
element using the selected mode (234).

In some instances, the bin grouping described with respect
to FIG. 11 may be performed for more than two syntax
elements. For example, as described above with respect to
FIG. 7, all of the context coded bins associated with a PU may
be grouped, such that the context coded bins of the PU are
coded together and the bypass coded bins of the PU are coded
together. In addition, grouping may be performed on a CU,
LCU, or slice level. That is, in some examples, all of the
context coded bins for a CU/LCU/slice may be grouped and
coded together, thereby enabling video encoder 20 to make a
single transition between context coding and bypass coding.

It should also be understood that the steps shown and
described with respect to FIG. 11 are provided as merely one
example. That is, the steps of the method of FIG. 11 need not
necessarily be performed in the order shown in FIG. 11, and
fewer, additional, or alternative steps may be performed. For
example, while FIG. 11 shows video encoder 20 encoding
context coded bins prior to bypass coded bins, in other
examples, video encoder 20 may code bypass coded bins
prior to context coded bins.
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FIG. 12 is a flowchart illustrating an example of entropy
decoding prediction data, according to aspects of this disclo-
sure. Although generally described as performed by compo-
nents of video decoder 30 (FIGS. 1 and 3) for purposes of
explanation, it should be understood that other video coding
units, processors, processing units, hardware-based coding
units such as encoder/decoders (CODECs), and the like, may
also be configured to perform the process of FIG. 12.

Inthe example of FIG. 12, video decoder 30 may determine
the syntax element (or elements) to be decoded (240). In an
example, video decoder 30 may identify syntax elements
associated with prediction data for decoding. Video decoder
30 may also determine whether bins of the syntax element(s)
include context coded bins and bypass coded bins (242). If
there is a mix of both context coding and bypass coding (the
“yes” branch of step 242), video decoder 30 may decode the
context coded bins (244). Video decoder 30 may also decode,
separately from the context coded bins, the bypass coded bins
(246). That is, in instances in which context coded bins are
grouped separately from the bypass coded bins in the bit-
stream being decoded, video decoder 30 may decode all
context coded separately from decoding bypass coded bins.
After decoding the bins, video decoder 30 may binarize the
decoded bins to form a decoded syntax element (248). For
example, video decoder 30 may map the decoded bin string to
a syntax element using a binarization table or other binariza-
tion process.

If the syntax element being coded does not include both
context coded bins and bypass coded bins (the “no” branch of
step 242), video decoder 30 may select a particular coding
mode (e.g., bypass or context adaptive) to code the syntax
element (250). Video decoder 30 may then decode the
encoded bins using the selected mode (252), and binarize the
decoded bin string to form a decoded syntax element (248).

As described above with respect to FIG. 11, in some
instances, bin grouping may be performed for more than two
syntax elements. For example, grouping may be performed
on a PU, CU, LCU, or slice level. That is, in some examples,
all of the context coded bins for a PU/CU/LCU/slice may be
grouped and coded together, thereby enabling video decoder
30 to make a single transition between context coding and
bypass coding.

It should also be understood that the steps shown and
described with respect to FIG. 12 are provided as merely one
example. That is, the steps of the method of FIG. 12 need not
necessarily be performed in the order shown in FIG. 12, and
fewer, additional, or alternative steps may be performed. For
example, while FIG. 12 shows video decoder 30 decoding
context coded bins prior to bypass coded bins, in other
examples, video decoder 30 may decode bypass coded bins
prior to context coded bins.

It should also be understood that, depending on the
example, certain acts or events of any of the methods
described herein can be performed in a different sequence,
may be added, merged, or left out all together (e.g., not all
described acts or events are necessary for the practice of the
method). Moreover, in certain examples, acts or events may
be performed concurrently, e.g., through multi-threaded pro-
cessing, interrupt processing, or multiple processors, rather
than sequentially. In addition, while certain aspects of this
disclosure are described as being performed by a single mod-
ule or unit for purposes of clarity, it should be understood that
the techniques of this disclosure may be performed by a
combination of units or modules associated with a video
coder.

Video encoder 20 may implement any or all of the tech-
niques of this disclosure for coding a reference index and
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other syntax elements in a video encoding process. Likewise,
video decoder 30 may implement any or all of these tech-
niques for coding reference index and other syntax elements
in a video coding process. A video coder, as described in this
disclosure, may refer to a video encoder or a video decoder.
Similarly, a video coding unit may refer to a video encoder or
a video decoder. Likewise, video coding may refer to video
encoding or video decoding.

In one or more examples, the functions described in this
disclosure and attributed to video encoder 20, video decoder
30, or any other processing unit may be implemented in
hardware, software, firmware, or any combination thereof. If
implemented in software, the functions may be stored on or
transmitted over, as one or more instructions or code, a com-
puter-readable medium and executed by a hardware-based
processing unit. Computer-readable media may include com-
puter-readable storage media, which corresponds to a tan-
gible medium such as data storage media, or communication
media including any medium that facilitates transfer of a
computer program from one place to another, e.g., according
to a communication protocol. In this manner, computer-read-
able media generally may correspond to (1) tangible com-
puter-readable storage media which is non-transitory or (2) a
communication medium such as a signal or carrier wave. Data
storage media may be any available media that can be
accessed by one or more computers or one or more processors
to retrieve instructions, code and/or data structures for imple-
mentation of the techniques described in this disclosure. A
computer program product may include a computer-readable
medium.

By way of example, and not limitation, such computer-
readable storage media can comprise RAM, ROM,
EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash
memory, or any other medium that can be used to store
desired program code in the form of instructions or data
structures and that can be accessed by a computer. Also, any
connection is properly termed a computer-readable medium.
For example, if instructions are transmitted from a website,
server, or other remote source using a coaxial cable, fiber
optic cable, twisted pair, digital subscriber line (DSL), or
wireless technologies such as infrared, radio, and microwave,
then the coaxial cable, fiber optic cable, twisted pair, DSL, or
wireless technologies such as infrared, radio, and microwave
are included in the definition of medium. It should be under-
stood, however, that computer-readable storage media and
data storage media do not include connections, carrier waves,
signals, or other transient media, but are instead directed to
non-transient, tangible storage media. Disk and disc, as used
herein, includes compact disc (CD), laser disc, optical disc,
digital versatile disc (DVD), floppy disk and Blu-ray disc,
where disks usually reproduce data magnetically, while discs
reproduce data optically with lasers. Combinations of the
above should also be included within the scope of computer-
readable media.

Instructions may be executed by one or more processors,
such as one or more digital signal processors (DSPs), general
purpose microprocessors, application specific integrated cir-
cuits (ASICs), field programmable logic arrays (FPGAs), or
other equivalent integrated or discrete logic circuitry, or any
combination thereof. Video encoder 20 or video decoder 30
may include any of a variety of such one or more processors
configured to perform the functions described in this disclo-
sure. Accordingly, the term “processor,” as used herein may
refer to any of the foregoing structure or any other structure
suitable for implementation of the techniques described
herein. In addition, in some aspects, the functionality
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described herein may be provided within dedicated hardware
and/or software modules configured for encoding and decod-
ing, or incorporated in a combined codec. Also, the tech-
niques could be fully implemented in one or more circuits or
logic elements.

The techniques of this disclosure may be implemented in a
wide variety of devices or apparatuses, including a wireless
handset, an integrated circuit (IC) or a set of ICs (e.g., a chip
set). Various components, modules, or units are described in
this disclosure to emphasize functional aspects of devices
configured to perform the disclosed techniques, but do not
necessarily require realization by different hardware units.
Rather, as described above, various units may be combined in
a codec hardware unit or provided by a collection of interop-
erative hardware units, including one or more processors as
described above, in conjunction with suitable software and/or
firmware.

Various examples have been described. These and other
examples are within the scope of the following claims.

What is claimed is:

1. A method for encoding a reference picture index syntax
element in a video encoding process, the method comprising:

binarizing a reference picture index value;
encoding at least one bin of the binarized reference picture
index value with a context coding mode of a context-
adaptive binary arithmetic coding (CABAC) process;

determining that the binarized reference picture index
value comprises more bins than the at least one bin
coded with the context coded mode; and

encoding, in response to determining that the binarized

reference picture index value comprises more bins than
the at least one bin coded with the context coded mode,
at least another bin of the binarized reference picture
index value with a bypass coding mode of the CABAC
process.

2. The method of claim 1,

wherein encoding at least one bin of the binarized refer-

ence picture index value with the context coding mode

comprises:

encoding a first bin (bin0) of the binarized reference
picture index value with a first context (ctx0),

encoding a second bin (bin1) of the binarized reference
picture index with a second context (ctx1), and

wherein encoding at least another bin of the binarized
reference picture index value with the bypass coding
mode comprises:
encoding a third bin (bin2) and all remaining bins after
the third bin (bin2) with the bypass coding mode.
3. The method of claim 2, wherein binarizing the reference
picture index value comprises binarizing the reference picture
index value using a combined truncated unary and exponen-
tial Golomb code.
4. The method of claim 1, wherein encoding the at least
another bin of the binarized reference picture index value
with the bypass coding mode comprises encoding the at least
another bin with at least one of a unary, truncated unary,
Golomb, exponential Golomb, or Golomb-Rice coding pro-
cess.
5. The method of claim 1, further comprising:
binarizing components of a first motion vector difference
value associated with the first reference picture index
and components of a second motion vector difference
value associated with a second reference picture index;

encoding a first portion of the components of first motion
vector difference value and a first portion of the compo-
nents of the second motion vector difference value with
the context coding mode; and
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encoding a second portion of the components of the first
motion vector difference value and a second portion of
the components of the second motion vector difference
value with the bypass coding mode.

6. The method of claim 5, further comprising:

grouping the first portion of the components of the first

motion vector difference value and the first portion of
the components of the second motion vector difference
value into a first group for coding with the context cod-
ing mode, and

grouping the second portion of the components of first

motion vector difference value and the second portion of
components of the second motion vector difference
value into a second group for coding with the bypass
coding mode.

7. The method of claim 1,

wherein encoding at least one bin of the binarized refer-

ence picture index value with the context coding mode

comprises:

encoding a first bin (bin0) of the binarized reference
picture index value with a first context (ctx0),

encoding a second bin (binl) of the binarized reference
picture index with a second context (ctx1),

encoding a third bin (bin2) of the binarized reference
picture index with a third context (ctx2), and

wherein encoding at least another bin of the binarized

reference picture index value with the bypass coding

mode comprises:

encoding all remaining bins after the third bin (bin2)
with the bypass coding mode.

8. The method of claim 1,

wherein encoding at least one bin of the binarized refer-

ence picture index value with the context coding mode

comprises:

encoding a first bin (bin0) of the binarized reference
picture index value with a first context (ctx0), and

wherein encoding at least another bin of the binarized

reference picture index value with the bypass coding

mode comprises:

encoding all remaining bins after the first bin (bin0) with
the bypass coding mode.

9. The method of claim 1,

wherein binarizing the reference picture index value com-

prises unary coding the reference picture index value;
wherein encoding the at least one bin of the binarized
reference picture index value with the context coding
mode comprises:
encoding at least one bin of the unary coded reference
picture index value with the context coding mode; and
wherein encoding the at least another bin of the binarized
reference picture index value with the bypass coding
mode comprises:
encoding at least another bin of the unary coded refer-
ence picture index value with the bypass coding
mode.

10. The method of claim 9, wherein unary coding the
reference picture index value comprises truncated unary cod-
ing the reference picture index value.

11. The method of claim 1, wherein

binarizing the reference picture index value comprises

unary coding and exponential-Golomb coding the refer-
ence picture index value;

wherein encoding the at least one bin of the binarized

reference picture index value with the context coding
mode comprises:
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encoding at least one bin of a unary coded portion of the
reference picture index value with the context coding
mode; and

wherein encoding the at least another bin of the binarized

reference picture index value with the bypass coding

mode comprises:

encoding at least another bin of the unary coded portion
of the reference picture index value and an exponen-
tial-Golomb coded portion of the reference picture
index value with the bypass coding mode.

12. The method of claim 11, further comprising truncating
the exponential-Golomb coded portion of the reference pic-
ture index value prior to encoding the exponential-Golomb
coded portion of the reference picture index value.

13. The method of claim 1,

wherein binarizing the reference picture index value com-

prises unary coding and fixed length coding the refer-
ence picture index value;

wherein encoding the at least one bin of the binarized

reference picture index value with the context coding
mode comprises encoding at least one bin of a unary
coded portion of the reference picture index value with
the context coding mode; and

wherein encoding the at least another bin of the binarized

reference picture index value with the bypass coding
mode comprises encoding at least another bin of the
unary coded portion reference picture index value and a
fixed length coded portion of the reference picture index
value with the bypass coding mode.

14. The method of claim 13, further comprising truncating
the fixed length coded portion of the reference picture index
value prior to coding the fixed length coded portion of the
reference picture index value.

15. The method of claim 1,

wherein encoding with the context coding mode comprises

selecting one or more probability models for coding the
at least one bin of the binarized reference picture index
and encoding the at least one bin of the binarized refer-
ence picture index using the selected one or more prob-
ability models; and

wherein encoding with the bypass coding mode comprises

determining a fixed probability and encoding the at least
another bin of the binarized reference picture index
value using the fixed probability.

16. An apparatus for encoding a reference picture index
syntax element in a video encoding process, the apparatus
comprising:

a decoded picture buffer configured to store one or more

reference pictures; and

one or more processors to:

binarize a reference picture index value for a reference
picture of the one or more reference pictures;

encode at least one bin of the binarized reference picture
index value with a context coding mode of a context-
adaptive binary arithmetic coding (CABAC) process;

determine that the binarized reference picture index
value comprises more bins than the at least one bin
coded with the context coded mode; and

encode, in response to determining that the binarized
reference picture index value comprises more bins
than the at least one bin coded with the context coded
mode, at least another bin of the binarized reference
picture index value with a bypass coding mode of the
CABAC process.
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17. The apparatus of claim 16,
wherein to encode at least one bin of the binarized refer-
ence picture index value with the context coding mode,
the one or more processors are configured to:
encode a first bin (bin0) of the binarized reference pic-
ture index value with a first context (ctx0),
encode a second bin (binl) of the binarized reference
picture index with a second context (ctx1), and
wherein to encode at least another bin of the binarized
reference picture index value with the bypass coding
mode, the one or more processors are configured to:
encode a third bin (bin2) and all remaining bins after the
third bin (bin2) with the bypass coding mode.
18. The apparatus of claim 17, wherein to binarize the
reference picture index value, the one or more processors are
configured to binarize the reference picture index value using
a combined truncated unary and exponential Golomb code.
19. The apparatus of claim 16, wherein to encode the at
least another bin of the binarized reference picture index
value with the bypass coding mode, the one or more proces-
sors are configured to encode the at least another bin with at
least one of a unary, truncated unary, Golomb, exponential
Golomb, or Golomb-Rice coding process.
20. The apparatus of claim 16, wherein the one or more
processors are further configured to:
binarize components of a first motion vector difference
value associated with the first reference picture index
and components of a second motion vector difference
value associated with a second reference picture index;

encode a first portion of the components of first motion
vector difference value and a first portion of the compo-
nents of the second motion vector difference value with
the context coding mode; and

encode a second portion of the components of the first

motion vector difference value and a second portion of
the components of the second motion vector difference
value with the bypass coding mode.

21. The apparatus of claim 20, wherein the one or more
processors are further configured to:

group the first portion of the components of the first motion

vector difference value and the first portion of the com-
ponents of the second motion vector difference value
into a first group for coding with the context coding
mode, and

group the second portion of the components of first motion

vector difference value and the second portion of com-
ponents of the second motion vector difference value
into a second group for coding with the bypass coding
mode.

22. The apparatus of claim 16,

wherein to encode at least one bin of the binarized refer-

ence picture index value with the context coding mode,

the one or more processors are configured to:

encode a first bin (bin0) of the binarized reference pic-
ture index value with a first context (ctx0),

encode a second bin (binl) of the binarized reference
picture index with a second context (ctx1),

encode a third bin (bin2) of the binarized reference pic-
ture index with a third context (ctx2), and

wherein to encode at least another bin of the binarized

reference picture index value with the bypass coding

mode, the one or more processors are configured to:

encode all remaining bins after the third bin (bin2) with
the bypass coding mode.
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23. The apparatus of claim 16,
wherein to encode at least one bin of the binarized refer-
ence picture index value with the context coding mode,
the one or more processors are configured to:
encode a first bin (bin0) of the binarized reference pic-
ture index value with a first context (ctx0), and
wherein to encode at least another bin of the binarized
reference picture index value with the bypass coding
mode, the one or more processors are configured to:
encode all remaining bins after the first bin (bin0) with
the bypass coding mode.
24. The apparatus of claim 16,
wherein to binarize the reference picture index value, the
one or more processors are configured to unary code the
reference picture index value;

wherein to encode the at least one bin of the binarized

reference picture index value with the context coding
mode, the one or more processors are configured to:
encode at least one bin of the unary coded reference
picture index value with the context coding mode; and
wherein to encode the at least another bin of the binarized
reference picture index value with the bypass coding
mode, the one or more processors are configured to:
encode at least another bin of the unary coded reference
picture index value with the bypass coding mode.

25. The apparatus of claim 24, wherein to unary code the
reference picture index value, the one or more processors are
configured to truncated unary code the reference picture
index value.

26. The apparatus of claim 16,

wherein to binarize the reference picture index value, the

one or more processors are configured to unary code and
exponential-Golomb code the reference picture index
value;
wherein to encode the at least one bin of the binarized
reference picture index value with the context coding
mode, the one or more processors are configured to:
encode at least one bin of a unary coded portion of the
reference picture index value with the context coding
mode; and
wherein to encode the at least another bin of the binarized
reference picture index value with the bypass coding
mode, the one or more processors are configured to:
encode at least another bin of the unary coded portion of
the reference picture index value and an exponential-
Golomb coded portion of the reference picture index
value with the bypass coding mode.
27. The apparatus of claim 26, wherein the one or more
processors are further configured to truncate the exponential-
Golomb coded portion of the reference picture index value
prior to encoding the exponential-Golomb coded portion of
the reference picture index value.
28. The apparatus of claim 16,
wherein to binarize the reference picture index value, the
one or more processors are configured to unary code and
fixed length code the reference picture index value;

wherein to encode the at least one bin of the binarized
reference picture index value with the context coding
mode, the one or more processors are configured to
encode at least one bin of a unary coded portion of the
reference picture index value with the context coding
mode; and

wherein to encode the at least another bin of the binarized

reference picture index value with the bypass coding
mode, the one or more processors are configured to
encode at least another bin of the unary coded portion
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reference picture index value and a fixed length coded
portion of the reference picture index value with the
bypass coding mode.

29. The apparatus of claim 28, wherein the one or more
processors are further configured to truncate the fixed length
coded portion of the reference picture index value prior to
coding the fixed length coded portion of the reference picture
index value.

30. The apparatus of claim 16,

wherein to encode with the context coding mode, the one or

more processors are configured to select one or more
probability models for coding the at least one bin of the
binarized reference picture index and encode the at least
one bin of the binarized reference picture index using the
selected one or more probability models; and

wherein to encode with the bypass coding mode, the one or

more processors are configured to determine a fixed
probability and encode the at least another bin of the
binarized reference picture index value using the fixed
probability.

31. An apparatus for encoding a reference picture index
syntax element in a video encoding process, the apparatus
comprising:

means for binarizing a reference picture index value;

means for encoding at least one bin of the binarized refer-

ence picture index value with a context coding mode of
a context-adaptive binary arithmetic coding (CABAC)
process;

means for determining that the binarized reference picture

index value comprises more bins than the at least one bin
coded with the context coded mode; and

means for encoding, in response to determining that the

binarized reference picture index value comprises more
bins than the at least one bin coded with the context
coded mode, at least another bin of the binarized refer-
ence picture index value with a bypass coding mode of
the CABAC process.

32. The apparatus of claim 31,

wherein the means for encoding at least one bin of the

binarized reference picture index value with the context

coding mode comprises:

means for encoding a first bin (bin0) of the binarized
reference picture index value with a first context
(ctx0),

means for encoding a second bin (binl) of the binarized
reference picture index with a second context (ctx1),
and

wherein the means for encoding at least another bin of the

binarized reference picture index value with the bypass

coding mode comprises:

means for encoding a third bin (bin2) and all remaining
bins after the third bin (bin2) with the bypass coding
mode.

33. The apparatus of claim 32, wherein the means for
binarizing the reference picture index value comprises means
for binarizing the reference picture index value using a com-
bined truncated unary and exponential Golomb code.

34. The apparatus of claim 31, wherein the means for
encoding the at least another bin of the binarized reference
picture index value with the bypass coding mode comprises
means for encoding the at least another bin with at least one of
a unary, truncated unary, Golomb, exponential Golomb, or
Golomb-Rice coding process.

35. The apparatus of claim 31, further comprising:

means for binarizing components of a first motion vector

difference value associated with the first reference pic-
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ture index and components of a second motion vector
difference value associated with a second reference pic-
ture index;
means for encoding a first portion of the components of
first motion vector difference value and a first portion of
the components of the second motion vector difference
value with the context coding mode; and
means for encoding a second portion of the components of
the first motion vector difference value and a second
portion of the components of the second motion vector
difference value with the bypass coding mode.
36. The apparatus of claim 35, further comprising:
means for grouping the first portion of the components of
the first motion vector difference value and the first
portion of the components of the second motion vector
difference value into a first group for coding with the
context coding mode, and
means for grouping the second portion of the components
of first motion vector difference value and the second
portion of components of the second motion vector dif-
ference value into a second group for coding with the
bypass coding mode.
37. The apparatus of claim 31,
wherein the means for encoding at least one bin of the
binarized reference picture index value with the context
coding mode comprises:
means for encoding a first bin (bin0) of the binarized
reference picture index value with a first context
(ctx0),
means for encoding a second bin (binl) of the binarized
reference picture index with a second context (ctx1),
means for encoding a third bin (bin2) of the binarized
reference picture index with a third context (ctx2),
and
wherein the means for encoding at least another bin of the
binarized reference picture index value with the bypass
coding mode comprises:
means for encoding all remaining bins after the third bin
(bin2) with the bypass coding mode.
38. The apparatus of claim 31,
wherein the means for encoding at least one bin of the
binarized reference picture index value with the context
coding mode comprises:
means for encoding a first bin (bin0) of the binarized
reference picture index value with a first context
(ctx0), and
wherein the means for encoding at least another bin of the
binarized reference picture index value with the bypass
coding mode comprises:
means for encoding all remaining bins after the first bin
(bin0) with the bypass coding mode.
39. The apparatus of claim 31,
wherein the means for binarizing the reference picture
index value comprises means for unary coding the ref-
erence picture index value;
wherein the means for encoding the at least one bin of the
binarized reference picture index value with the context
coding mode comprises:
means for encoding at least one bin of the unary coded
reference picture index value with the context coding
mode; and
wherein the means for encoding the at least another bin of
the binarized reference picture index value with the
bypass coding mode comprises:
means for encoding at least another bin of the unary
coded reference picture index value with the bypass
coding mode.
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40. The apparatus of claim 39, wherein the means for unary
coding the reference picture index value comprises means for
truncated unary coding the reference picture index value.

41. The apparatus of claim 31,

wherein the means for binarizing the reference picture

index value comprises means for unary coding and
exponential-Golomb coding the reference picture index
value;
wherein the means for encoding the at least one bin of the
binarized reference picture index value with the context
coding mode comprises:
means for encoding at least one bin of a unary coded
portion of the reference picture index value with the
context coding mode; and
wherein the means for encoding the at least another bin of
the binarized reference picture index value with the
bypass coding mode comprises:
means for encoding at least another bin of the unary
coded portion of the reference picture index value and
an exponential-Golomb coded portion of the refer-
ence picture index value with the bypass coding
mode.
42. The apparatus of claim 41, further comprising means
for truncating the exponential-Golomb coded portion of the
reference picture index value prior to encoding the exponen-
tial-Golomb coded portion of the reference picture index
value.
43. The apparatus of claim 31,
wherein the means for binarizing the reference picture
index value comprises means for unary coding and fixed
length coding the reference picture index value;

wherein the means for encoding the at least one bin of the
binarized reference picture index value with the context
coding mode comprises means for encoding at least one
bin of a unary coded portion of the reference picture
index value with the context coding mode; and

wherein the means for encoding the at least another bin of
the binarized reference picture index value with the
bypass coding mode comprises means for encoding at
least another bin of the unary coded portion reference
picture index value and a fixed length coded portion of
the reference picture index value with the bypass coding
mode.
44. The apparatus of claim 43, further comprising means
for truncating the fixed length coded portion of the reference
picture index value prior to coding the fixed length coded
portion of the reference picture index value.
45. The apparatus of claim 31,
wherein means for encoding with the context coding mode
comprises means for selecting one or more probability
models for coding the at least one bin of the binarized
reference picture index and means for encoding the at
least one bin of the binarized reference picture index
using the selected one or more probability models; and

wherein means for encoding with the bypass coding mode
comprises means for determining a fixed probability and
means for encoding the at least another bin of the bina-
rized reference picture index value using the fixed prob-
ability.

46. A method for decoding a reference picture index syntax
element in a video decoding process, the method comprising:

decoding at least one bin of a reference picture index value

with a context coding mode of a context-adaptive binary
arithmetic coding (CABAC) process;

determining that the binarized reference picture index

value comprises more bins than the at least one bin
coded with the context coded mode;
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decoding, in response to determining that the reference
picture index value comprises more bins than the at least
one bin coded with the context coded mode, at least
another bin of the reference picture index value with a
bypass coding mode of the CABAC process; and
binarizing the reference picture index value.

47. The method of claim 46,

wherein decoding at least one bin of the reference picture

index value with the context coding mode comprises:

decoding a first bin (bin0) of the reference picture index
value with a first context (ctx0),

decoding a second bin (binl) of the reference picture
index with a second context (ctx1), and

wherein decoding at least another bin of the reference

picture index value with the bypass coding mode com-

prises:

decoding a third bin (bin2) and all remaining bins after
the third bin (bin2) with the bypass coding mode.

48. The method of claim 47, wherein binarizing the refer-
ence picture index value comprises binarizing the reference
picture index value using a combined truncated unary and
exponential Golomb code.

49. The method of claim 46, wherein decoding the at least
another bin of the reference picture index value with the
bypass coding mode comprises decoding the at least another
bin with at least one of a unary, truncated unary, Golomb,
exponential Golomb, or Golomb-Rice coding process.

50. The method of claim 46, further comprising:

decoding a first portion of components of a first motion

vector difference value and a first portion of components
of a second motion vector difference value with the
context coding mode;

decoding a second portion of the components of the first

motion vector difference value and a second portion of
the components of the second motion vector difference
value with the bypass coding mode; and

binarizing the components of the first motion vector dif-

ference value associated with the first reference picture
index and the components of the second motion vector
difference value associated with a second reference pic-
ture index.

51. The method of claim 50, further comprising:

grouping the first portion of the components of the first

motion vector difference value and the first portion of
the components of the second motion vector difference
value into a first group for coding with the context cod-
ing mode, and

grouping the second portion of the components of first

motion vector difference value and the second portion of
components of the second motion vector difference
value into a second group for coding with the bypass
coding mode.

52. The method of claim 46,

wherein decoding at least one bin of the reference picture

index value with the context coding mode comprises:

decoding a first bin (bin0) of the reference picture index
value with a first context (ctx0),

decoding a second bin (binl) of the reference picture
index with a second context (ctx1),

decoding a third bin (bin2) of the reference picture index
with a third context (ctx2), and

wherein decoding at least another bin of the reference

picture index value with the bypass coding mode com-
prises:

decoding all remaining bins after the third bin (bin2) with

the bypass coding mode.
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53. The method of claim 46,
wherein decoding at least one bin of the reference picture
index value with the context coding mode comprises:
decoding a first bin (bin0) of the reference picture index
value with a first context (ctx0), and

wherein decoding at least another bin of the reference

picture index value with the bypass coding mode com-

prises:

decoding all remaining bins after the first bin (bin0) with
the bypass coding mode.

54. The method of claim 46,

wherein decoding the at least one bin of the reference

picture index value with the context coding mode com-

prises:

decoding at least one bin of the unary coded reference
picture index value with the context coding mode;

wherein decoding the at least another bin of the index value

with the bypass coding mode comprises:

decoding at least another bin of the unary coded refer-
ence picture index value with the bypass coding
mode; and

wherein binarizing the reference picture index value com-

prises unary coding the reference picture index value.

55. The method of claim 54, wherein unary coding the
reference picture index value comprises truncated unary cod-
ing the reference picture index value.

56. The method of claim 46,

wherein decoding the at least one bin of the reference

picture index value with the context coding mode com-

prises:

decoding at least one bin of a unary coded portion of the
reference picture index value with the context coding
mode;

wherein decoding the at least another bin of the reference

picture index value with the bypass coding mode com-

prises:

decoding at least another bin of the unary coded portion
of the reference picture index value and an exponen-
tial-Golomb coded portion of the reference picture
index value with the bypass coding mode; and

wherein binarizing the reference picture index value com-

prises unary coding and exponential-Golomb coding the

reference picture index value.

57. The method of claim 56, further comprising truncating
the exponential-Golomb coded portion of the reference pic-
ture index value prior to decoding the exponential-Golomb
coded portion of the reference picture index value.

58. The method of claim 46,

wherein decoding the at least one bin of the reference

picture index value with the context coding mode com-
prises decoding at least one bin of a unary coded portion
of the reference picture index value with the context
coding mode;

wherein decoding the at least another bin of the reference

picture index value with the bypass coding mode com-
prises decoding at least another bin of the unary coded
portion reference picture index value and a fixed length
coded portion of the reference picture index value with
the bypass coding mode; and

wherein binarizing the reference picture index value com-

prises unary coding and fixed length coding the refer-
ence picture index value.

59. The method of claim 58, further comprising truncating
the fixed length coded portion of the reference picture index
value prior to coding the fixed length coded portion of the
reference picture index value.
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60. The method of claim 46,

wherein decoding with the context coding mode comprises
selecting one or more probability models for coding the
at least one bin of the binarized reference picture index
and decoding the at least one bin of the binarized refer-
ence picture index using the selected one or more prob-
ability models; and

wherein decoding with the bypass coding mode comprises

determining a fixed probability and decoding the at least
another bin of the binarized reference picture index
value using the fixed probability.

61. An apparatus for decoding a reference picture index
syntax element in a video decoding process, the apparatus
comprising:

a decoded picture buffer configured to store one or more

reference pictures; and

one or more processors configured to:

decode at least one bin of a reference picture index value
with a context coding mode of a context-adaptive
binary arithmetic coding (CABAC) process, wherein
the reference picture index value is associated with a
reference picture of the one or more reference pic-
tures;

determine that the binarized reference picture index
value comprises more bins than the at least one bin
coded with the context coded mode;

decode, in response to determining that the reference
picture index value comprises more bins than the at
least one bin coded with the context coded mode, at
least another bin of the reference picture index value
with a bypass coding mode of the CABAC process;
and

binarize the reference picture index value.

62. The apparatus of claim 61,
wherein to decode at least one bin of the reference picture

index value with the context coding mode, the one or

more processors are configured to:

decode a first bin (bin0) of the reference picture index
value with a first context (ctx0),

decode a second bin (bin1) of the reference picture index
with a second context (ctx1), and

wherein to decode at least another bin of the reference

picture index value with the bypass coding mode, the

one or more processors are configured to:

decode a third bin (bin2) and all remaining bins after the
third bin (bin2) with the bypass coding mode.

63. The apparatus of claim 62, wherein to binarize the
reference picture index value, the one or more processors are
configured to binarize the reference picture index value using
a combined truncated unary and exponential Golomb code.

64. The apparatus of claim 61, wherein to decode the at
least another bin of the reference picture index value with the
bypass coding mode, the one or more processors are config-
ured to decode the at least another bin with at least one of a
unary, truncated unary, Golomb, exponential Golomb, or
Golomb-Rice coding process.

65. The apparatus of claim 61, wherein the one or more
processors are further configured to:

decode a first portion of components of a first motion

vector difference value and a first portion of components
of a second motion vector difference value with the
context coding mode;

decode a second portion of the components of the first

motion vector difference value and a second portion of
the components of the second motion vector difference
value with the bypass coding mode; and

binarize the components of the first motion vector differ-

ence value associated with the first reference picture
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index and the components of the second motion vector
difference value associated with a second reference pic-
ture index.
66. The apparatus of claim 65, wherein the one or more
processors are further configured to:
group the first portion of the components of the first motion
vector difference value and the first portion of the com-
ponents of the second motion vector difference value
into a first group for coding with the context coding
mode, and
group the second portion of the components of first motion
vector difference value and the second portion of com-
ponents of the second motion vector difference value
into a second group for coding with the bypass coding
mode.
67. The apparatus of claim 61,
wherein to decode at least one bin of the reference picture
index value with the context coding mode, the one or
more processors are configured to:
decode a first bin (bin0) of the reference picture index
value with a first context (ctx0),
decode a second bin (bin1) of the reference picture index
with a second context (ctx1),
decode a third bin (bin2) of the reference picture index
with a third context (ctx2), and
wherein to decode at least another bin of the reference
picture index value with the bypass coding mode, the
one or more processors are configured to:
decode all remaining bins after the third bin (bin2) with
the bypass coding mode.
68. The apparatus of claim 61,
wherein to decode at least one bin of the reference picture
index value with the context coding mode, the one or
more processors are configured to:
decode a first bin (bin0) of the reference picture index
value with a first context (ctx0), and
wherein to decode at least another bin of the reference
picture index value with the bypass coding mode, the
one or more processors are configured to:
decode all remaining bins after the first bin (bin0) with
the bypass coding mode.
69. The apparatus of claim 61,
wherein to decode the at least one bin of the reference
picture index value with the context coding mode, the
one or more processors are configured to:
decode at least one bin of the unary coded reference
picture index value with the context coding mode;
wherein to decode the at least another bin of the index value
with the bypass coding mode, the one or more proces-
sors are configured to:
decode at least another bin of the unary coded reference
picture index value with the bypass coding mode; and
wherein to binarize the reference picture index value, the
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reference picture index value.

70. The apparatus of claim 69, wherein to unary code the
reference picture index value, the one or more processors are
configured to truncated unary code the reference picture
index value.

71. The apparatus of claim 61,

wherein to decode the at least one bin of the reference

picture index value with the context coding mode, the

one or more processors are configured to:

decode at least one bin of a unary coded portion of the
reference picture index value with the context coding
mode;
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wherein to decode the at least another bin of the reference
picture index value with the bypass coding mode, the
one or more processors are configured to:
decode at least another bin of the unary coded portion of
the reference picture index value and an exponential-
Golomb coded portion of the reference picture index
value with the bypass coding mode; and
wherein to binarize the reference picture index value, the
one or more processors are configured to unary code and
exponential-Golomb code the reference picture index
value.

72. The apparatus of claim 71, wherein the one or more
processors are further configured to truncate the exponential-
Golomb coded portion of the reference picture index value
prior to decoding the exponential-Golomb coded portion of
the reference picture index value.

73. The apparatus of claim 61,

wherein to decode the at least one bin of the reference

picture index value with the context coding mode, the
one or more processors are configured to decode at least
one bin of a unary coded portion of the reference picture
index value with the context coding mode;

wherein to decode the at least another bin of the reference

picture index value with the bypass coding mode, the
one or more processors are configured to decode at least
another bin of the unary coded portion reference picture
index value and a fixed length coded portion of the
reference picture index value with the bypass coding
mode; and

wherein to binarize the reference picture index value, the

one or more processors are configured to unary code and
fixed length code the reference picture index value.

74. The apparatus of claim 73, wherein the one or more
processors are further configured to truncate the fixed length
coded portion of the reference picture index value prior to
coding the fixed length coded portion of the reference picture
index value.

75. The apparatus of claim 61,

wherein to decode with the context coding mode, the one or

more processors are configured to select one or more
probability models for coding the at least one bin of the
binarized reference picture index and decode the at least
one bin of the binarized reference picture index using the
selected one or more probability models; and

wherein to decode with the bypass coding mode, the one or

more processors are configured to determine a fixed
probability and decode the at least another bin of the
binarized reference picture index value using the fixed
probability.

76. A non-transitory computer-readable medium storing
instructions thereon that, when executed cause one or more
processors to:

decode at least one bin of a reference picture index value

with a context coding mode of a context-adaptive binary
arithmetic coding (CABAC) process;

determine that the binarized reference picture index value

comprises more bins than the at least one bin coded with
the context coded mode;

decode, in response to determining that the reference pic-

ture index value comprises more bins than the at least

one bin coded with the context coded mode, at least

another bin of the reference picture index value with a

bypass coding mode of the CABAC process; and
binarize the reference picture index value.
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77. The computer-readable medium of claim 76,
wherein to decode at least one bin of the reference picture
index value with the context coding mode, the instruc-
tions cause the one or more processors to:
decode a first bin (bin0) of the reference picture index
value with a first context (ctx0),
decode a second bin (bin1) of the reference picture index
with a second context (ctx1), and

wherein to decode at least another bin of the reference

picture index value with the bypass coding mode, the

instructions cause the one or more processors to:

decode a third bin (bin2) and all remaining bins after the
third bin (bin2) with the bypass coding mode.

78. The computer-readable medium of claim 77, wherein
to binarize the reference picture index value, the instructions
cause the one or more processors to binarize the reference
picture index value using a combined truncated unary and
exponential Golomb code.

79. The computer-readable medium of claim 76, wherein
to decode the at least another bin of the reference picture
index value with the bypass coding mode, the instructions
cause the one or more processors to decode the at least
another bin with at least one of a unary, truncated unary,
Golomb, exponential Golomb, or Golomb-Rice coding pro-
cess.

80. The computer-readable medium of claim 76, further
comprising instructions that cause the one or more processors
to:

decode a first portion of components of a first motion

vector difference value and a first portion of components
of a second motion vector difference value with the
context coding mode;

decode a second portion of the components of the first

motion vector difference value and a second portion of
the components of the second motion vector difference
value with the bypass coding mode; and

binarize the components of the first motion vector differ-

ence value associated with the first reference picture
index and the components of the second motion vector
difference value associated with a second reference pic-
ture index.

81. The computer-readable medium of claim 80, further
comprising instructions that cause the one or more processors
to:

group the first portion of the components of the first motion

vector difference value and the first portion of the com-
ponents of the second motion vector difference value
into a first group for coding with the context coding
mode, and

group the second portion of the components of first motion

vector difference value and the second portion of com-
ponents of the second motion vector difference value
into a second group for coding with the bypass coding
mode.

82. The computer-readable medium of claim 76,

wherein to decode at least one bin of the reference picture

index value with the context coding mode, the instruc-

tions cause the one or more processors to:

decode a first bin (bin0) of the reference picture index
value with a first context (ctx0),

decode a second bin (bin1) of the reference picture index
with a second context (ctx1),

decode a third bin (bin2) of the reference picture index
with a third context (ctx2), and

wherein to decode at least another bin of the reference

picture index value with the bypass coding mode, the
instructions cause the one or more processors to:
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decode all remaining bins after the third bin (bin2) with
the bypass coding mode.

83. The computer-readable medium of claim 76,

wherein to decode at least one bin of the reference picture

index value with the context coding mode, the instruc-

tions cause the one or more processors to:

decode a first bin (bin0) of the reference picture index
value with a first context (ctx0), and

wherein to decode at least another bin of the reference

picture index value with the bypass coding mode, the

instructions cause the one or more processors to:

decode all remaining bins after the first bin (bin0) with
the bypass coding mode.

84. The computer-readable medium of claim 76,

wherein to decode the at least one bin of the reference

picture index value with the context coding mode, the
instructions cause the one or more processors to:
decode at least one bin of the unary coded reference
picture index value with the context coding mode;
wherein to decode the at least another bin of the index value
with the bypass coding mode, the instructions cause the
one or more processors to:
decode at least another bin of the unary coded reference
picture index value with the bypass coding mode; and
wherein to binarize the reference picture index value, the
instructions cause the one or more processors to unary
code the reference picture index value.

85. The computer-readable medium of claim 84, wherein
to unary code the reference picture index value, the instruc-
tions cause the one or more processors to truncated unary
code the reference picture index value.

86. The computer-readable medium of claim 76,

wherein to decode the at least one bin of the reference

picture index value with the context coding mode, the

instructions cause the one or more processors to:

decode at least one bin of a unary coded portion of the
reference picture index value with the context coding
mode;

wherein to decode the at least another bin of the reference

picture index value with the bypass coding mode, the

instructions cause the one or more processors to:

decode at least another bin of the unary coded portion of
the reference picture index value and an exponential-
Golomb coded portion of the reference picture index
value with the bypass coding mode; and

wherein to binarize the reference picture index value, the

instructions cause the one or more processors to unary
code and exponential-Golomb code the reference pic-
ture index value.
87. The computer-readable medium of claim 86, further
comprising instructions that cause the one or more processors
to truncate the exponential-Golomb coded portion of the ref-
erence picture index value prior to decoding the exponential-
Golomb coded portion of the reference picture index value.
88. The computer-readable medium of claim 76,
wherein to decode the at least one bin of the reference
picture index value with the context coding mode, the
instructions cause the one or more processors to decode
at least one bin of a unary coded portion of the reference
picture index value with the context coding mode;

wherein to decode the at least another bin of the reference
picture index value with the bypass coding mode, the
instructions cause the one or more processors to decode
at least another bin of the unary coded portion reference
picture index value and a fixed length coded portion of
the reference picture index value with the bypass coding
mode; and
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wherein to binarize the reference picture index value, the
instructions cause the one or more processors to unary
code and fixed length code the reference picture index
value.

89. The computer-readable medium of claim 88, further
comprising instructions that cause the one or more processors
to truncate the fixed length coded portion of the reference
picture index value prior to coding the fixed length coded
portion of the reference picture index value.

90. The computer-readable medium of claim 76,

wherein to decode with the context coding mode, the

instructions cause the one or more processors to select
one or more probability models for coding the at least
one bin of the binarized reference picture index and
decode the at least one bin of the binarized reference
picture index using the selected one or more probability
models; and

wherein to decode with the bypass coding mode, the

instructions cause the one or more processors to deter-
mine a fixed probability and decode the at least another
bin of the binarized reference picture index value using
the fixed probability.

91. The computer-readable medium of claim 76, further
comprising instructions that cause the one or more processors
to:

decode a first bin of an inter-prediction direction syntax

element with a context coding mode of the CABAC
process; and

decode a second bin ofthe inter-prediction direction syntax

element with a bypass coding mode of the CABAC
process.
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